
Specification

BSAPI Reference Manual

Information furnished is believed to be accurate and reliable. However, AuthenTec, Inc assumes no
responsibility for the consequences of use of such information not for any infringement of patents
or other rights of third parties which may result from its use. No license is granted by implication

or otherwise under any patent or patent rights of AuthenTec, Inc. Specifications mentioned in
this publication are subject to change without notice. This publication supersedes and replaces all
information previously supplied. AuthenTec, Inc's products are not authorized for use as critical
components in life support devices or systems without express written approval of AuthenTec,
Inc. AuthenTec, the AuthenTec logo, TouchChip, PerfectPrint, PerfectMatch and PerfectTrust

are trademarks or registered trademarks of AuthenTec, Inc. All other products described
in this publication are trademarks of their respective holders and should be treated as such.

Copyright © 2007 - 2012 AUTHENTEC, Inc - All Rights Reserved

Table of Contents
1 Introduction ... 5

1.1 Terminology ... 5
1.2 Preview .. 5
1.3 Architecture .. 5
1.4 Naming Conventions .. 6

2 BSAPI.DLL Functions .. 7
2.1 General Description ... 7

2.1.1 Supported FM Devices ... 7
2.1.2 Error Handling ... 7
2.1.3 Memory Management .. 7
2.1.4 Interactive Operations .. 8
2.1.5 Multithreading .. 8
2.1.6 Scheduling of Biometric Operations ... 8
2.1.7 Anti-latent Checking .. 9
2.1.8 Power Control .. 9
2.1.9 Windows Service Compatibility Mode ... 10
2.1.10 Support for Terminal Services and Citrix ... 10
2.1.11 Blinking with LEDs ... 12

2.2 Application General Functions ... 14
2.2.1 ABSInitialize .. 14
2.2.2 ABSInitializeEx .. 15
2.2.3 ABSTerminate .. 16
2.2.4 ABSOpen ... 17
2.2.5 ABSClose .. 18
2.2.6 ABSEnumerateDevices ... 19
2.2.7 ABSGetDeviceProperty .. 20
2.2.8 ABSFree .. 21

2.3 Biometric Functions ... 22
2.3.1 ABSEnroll .. 22
2.3.2 ABSVerify ... 23
2.3.3 ABSVerifyMatch ... 24
2.3.4 ABSCapture ... 25
2.3.5 ABSCheckLatent ... 26
2.3.6 ABSNavigate .. 27
2.3.7 ABSDetectFinger ... 28

2.4 Image Grabbing Functions ... 29
2.4.1 ABSGrab ... 29
2.4.2 ABSRawGrab ... 31
2.4.3 ABSListImageFormats .. 33
2.4.4 ABSGrabImage ... 34
2.4.5 ABSRawGrabImage ... 35

2.5 Miscellaneous Functions ... 37
2.5.1 ABSCancelOperation ... 37
2.5.2 ABSSetAppData .. 38
2.5.3 ABSGetAppData ... 39
2.5.4 ABSSetSessionParameter .. 40
2.5.5 ABSGetSessionParameter .. 41
2.5.6 ABSSetGlobalParameter ... 42
2.5.7 ABSGetGlobalParameter ... 43

BSAPI Reference Manual

2

2.5.8 ABSSetLED ... 44
2.5.9 ABSGetLED ... 46
2.5.10 ABSSetLedEx ... 47
2.5.11 ABSGetLedEx ... 48
2.5.12 ABSBinarizeSampleImage ... 49
2.5.13 ABSGetLastErrorInfo ... 50
2.5.14 ABSEscape ... 51
2.5.15 ABSSessionEscape ... 52

3 BSGUI.DLL Functions .. 53
3.1 Using BSGUI.DLL ... 53
3.2 GUI Customization .. 53
3.3 Default Callback Implementation .. 53

3.3.1 ABSDefaultCallback .. 53
3.4 ABS_DEFAULT_CALLBACK_CONTEXT ... 55
3.5 Flags for ABS_DEFAULT_CALLBACK_CONTEXT
(ABS_DEFAULT_CALLBACK_FLAG_xxxx) ... 56

4 BSSRV.DLL Functions ... 57
4.1 General Description .. 57

4.1.1 Error Handling .. 57
4.1.2 Memory Management ... 57
4.1.3 Multithreading .. 57
4.1.4 BSAPI.DLL and BSSRV.DLL ... 57

4.2 Application General Functions ... 57
4.2.1 ABSSrvInitialize .. 58
4.2.2 ABSSrvTerminate .. 59
4.2.3 ABSSrvGetLastErrorInfo .. 60
4.2.4 ABSSrvFree ... 61

4.3 Server-side Functions .. 62
4.3.1 ABSSrvVerifyMatch .. 62

4.4 Miscellaneous Functions ... 63
4.4.1 ABSSrvSetGlobalParameter ... 63
4.4.2 ABSSrvGetGlobalParameter .. 64

5 Declarations .. 65
5.1 Basic Types .. 65
5.2 Specific Types ... 66

5.2.1 ABS_DATA ... 66
5.2.2 ABS_BIR_HEADER .. 67
5.2.3 ABS_BIR ... 68
5.2.4 ABS_OPERATION ... 69
5.2.5 ABS_PROFILE_DATA .. 71
5.2.6 ABS_SWIPE_INFO ... 72
5.2.7 ABS_IMAGE_FORMAT .. 74
5.2.8 ABS_IMAGE ... 75
5.2.9 ABS_LED_PARAMS_MANUAL .. 76
5.2.10 ABS_LED_PARAMS_MANUAL2 ... 77
5.2.11 ABS_PROCESS_DATA ... 79
5.2.12 ABS_PROCESS_BEGIN_DATA .. 80
5.2.13 ABS_PROCESS_PROGRESS_DATA ... 81
5.2.14 ABS_PROCESS_SUCCESS_DATA ... 82
5.2.15 ABS_NAVIGATION_DATA ... 83
5.2.16 ABS_DEVICE_LIST_ITEM .. 84
5.2.17 ABS_DEVICE_LIST .. 85
5.2.18 ABS_CALLBACK ... 86

BSAPI Reference Manual

3

6 Specific Constants .. 88
6.1 Flags for ABSInitializeEx (ABS_INIT_FLAG_xxxx) ... 88
6.2 Flags for ABS_OPERATION (ABS_OPERATION_FLAG_xxxx) ... 89
6.3 Flags for Biometric and Image Grabbing Functions (ABS_FLAG_xxxx) 90
6.4 Template Purpose Constants (ABS_PURPOSE_xxxx) ... 91
6.5 Key Constants for ABS_PROFILE_DATA (ABS_PKEY_xxxx) ... 92
6.6 ABS_PKEY_IMAGE_FORMAT Values (ABS_PVAL_IFMT_xxxx) 97
6.7 ABS_PKEY_REC_TERMINATION_POLICY Values (ABS_PVAL_RTP_xxxx) 102
6.8 ABS_PKEY_REC_SWIPE_DIRECTION Values (ABS_PVAL_SWIPEDIR_xxxx) 103
6.9 ABS_PKEY_REC_NOISE_ROBUSTNESS Values (ABS_PVAL_NOIR_xxxx) 104
6.10 ABS_PKEY_SENSOR_SECURITY_MODE values (ABS_PVAL_SSM_xxxx) 105
6.11 ABS_PKEY_READER_SECURITY_MODE values (ABS_PVAL_RSM_xxxx) 106
6.12 Swipe Info Flags (ABS_SWIPE_FLAG_xxxx) ... 107
6.13 Anti-latent Checking Flags (ABS_LATENT_xxxx) ... 108
6.14 Finger Detect Flags (ABS_DETECT_PURPOSE_xxxx) ... 109
6.15 Process Constants (ABS_PROCESS_xxxx) ... 110
6.16 Device Property Constants (ABS_DEVPROP_xxxx) ... 113
6.17 Device Property Sensor Type Flag Constants
(ABS_DEVPROP_SENSOR_TYPE_FLAG_xxxx) .. 117
6.18 LED Blinking Mode Constants (ABS_LED_MODE_xxxx) ... 118
6.19 LED Bits for Flags in ABS_LED_PARAMS_MANUAL2 Structure
(ABS_LEDDRV_FLAG_xxxx) .. 119
6.20 Session and Global Parameter Constants (ABS_PARAM_xxxx) .. 120
6.21 Parameter ABS_PARAM_CONSOLIDATION_TYPE Values
(ABS_CONSOLIDATION_xxxx) ... 126
6.22 Parameter ABS_PARAM_MATCH_LEVEL Values (ABS_MATCH_xxxx) 127
6.23 Parameter ABS_PARAM_ANTISPOOFING_POLICY Values
(ABS_ANTISPOOFING_xxxx) .. 128
6.24 Parameter ABS_PARAM_SENSOR_SECURITY Values (ABS_SENSOR_SECURITY_xxxx)
.. 129
6.25 Callback Message Codes (ABS_MSG_xxxx) ... 130

7 List of Defined Result Codes .. 135
8 New Features ... 137

8.1 New Features in Version 4.2 .. 137
8.1.1 New Global Parameters ... 137
8.1.2 New Device Properties ... 137
8.1.3 New Hardware Supported .. 137

8.2 New Features in Version 4.1.1 .. 137
8.2.1 New LED control mode .. 137

8.3 New Features in Version 4.1 .. 137
8.3.1 New Device property .. 137
8.3.2 New Finger detection funcionality ... 137

8.4 New Features in Version 4.0 .. 137
8.4.1 New Device property .. 137
8.4.2 New Global Parameters ... 137
8.4.3 Advanced Support for LEDs .. 137

8.5 New Features in Version 3.9 .. 138
8.5.1 New Global Parameters ... 138
8.5.2 New Device Properties. ... 138

8.6 New Features in Version 3.5 .. 138
8.6.1 Global Parameter ABS_PARAM_IFACE_VERSION ... 138
8.6.2 Dynamic Enrollment ... 138
8.6.3 Image Grabbing Functions ... 139

BSAPI Reference Manual

4

8.6.4 Global Parameter ABS_PARAM_POWER_SAVE_CHECK_KEYBOARD 139
8.6.5 Internal Template Format Types ... 139
8.6.6 Compatibility with Windows NT Services .. 140
8.6.7 ABS_CALLBACK and Threads ... 140
8.6.8 Server-Side Library BSSRV.DLL ... 140
8.6.9 Support for Terminal and Citrix ... 140

BSAPI Reference Manual

5

1 Introduction

1.1 Terminology

• BSAPI – Biometric Services API

• FM – fingerprint module (fingerprint reader device) connected to host

• HOST – computer where the FM is connected to

• BioAPI – the industry standard for biometric API, developed by BioAPI Consortium [www.bioapi.org]. All
references to BioAPI in this document assume version 1.1 of the standard.

• BioAPI Framework – reference implementation of BioAPI, by BioAPI Consortium.

• (BioAPI) BSP – Biometry Service Provider; 3rd party module pluggable into BioAPI Framework. BSP pro-
vides support for particular device (e.g. fingerprint reader).

• BSP API – API below BioAPI Framework, specifying interface between BioAPI framework and BSPs.

• TFMESSBSP – AuthenTec BSP implementation, supporting TFM and ESS devices.

1.2 Preview

The purpose of this document is to describe architecture and interface of Biometric Services API (BSAPI).

BSAPI was designed to meet these requirements:

• Similar to BioAPI: development team familiar with BioAPI should be able to adopt BSAPI easily and in
reasonable short time.

• Compatibility with TFMESSBSP: BSAPI will provide functions which can behave exactly as corresponding
functions in TFMESSBSP. (Future version of TFMESBSP can be implemented on top of BSAPI easily.)

• BSAPI will be implemented in simple DLL. Unlike BioAPI, BSAPI does not require any framework to use it.

• BSAPI will provide more functionality comparing to BioAPI, so more biometric and miscellaneous features
of our devices will be available (e.g. navigation).

• Avoid need to use any low level API (e.g. PTAPI).

Do not misunderstand the term “compatibility” with BioAPI as used in the list above. There will be no binary
compatibility between BioAPI and BSAPI, nor compatibility on source level. BSAPI will provide set of function
which will allow all code using BioAPI (with TFMESSBSP) to be rewritten to use BSAPI instead, with exactly
same behavior.

In fact, as further described below, future versions of TFMESSBSP will be thin layer on top of BSAPI.

1.3 Architecture

BSAPI is composed from several dynamic libraries (.DLL on Windows. On other system, other file extension
is used.):

• BSAPI.DLL, which contains all core functionality.

• BSGUI.DLL providing default implementation of GUI callback. The library loads graphics from separat-
ed .zip file (window decorations and feedback images), so that customization of look&feel is possible. The

www.bioapi.org

BSAPI Reference Manual

6

library supports multiple languages (localization), generally those supported in our other software. Applica-
tions can provide their own callback and in such case, they do not use this library. Please note that currently
BSGUI.DLL is available only for Windows platform.

• BSSRV.DLL is a library with biometric functions which do not require a biometric sensor device present.
Intended use case is server in applications with client-server architecture, where server side manages a database
of fingerprint templates acquired by clients, which are assumed to use BSAPI.DLL.

Note that BSSRV.DLL is provided only within full BSAPI SDK package. It is not provided in the lite version
of the SDK.

Application developers can choose from several approaches how to deal with the GUI:

• Use BSGUI.DLL as it is, which will guarantee appearance of the applications, consistent with AuthenTec
applications.

• Use BSGUI.DLL, with customized .zip file: some or all of the graphic files in the .zip file can be modified
or replaced with other graphics.

• Implement your own callback implementation. This allows maximal freedom in customization, including
adding support for languages not supported by BSGUI.DLL.

1.4 Naming Conventions

All identifiers (names of constants, types and functions) will use prefix “ABS”, and follow the patterns below:

• ABS_MACRO_IDENTIFIER

• ABS_TYPE_IDENTIFIER

• ABSFunctionIdentifier()

Server-side functions (BSSRV.DLL) use prefix ABSSrv:

• ABSSrvFunctionIdentifier()

BSSRV.DLL shares definition of constants and types with BSAPI.DLL.

In function prototypes special words IN, OUT and INOUT are used, to denote if the parameter is used to pass data
into the function, return some result data or both.

BSAPI Reference Manual

7

2 BSAPI.DLL Functions

2.1 General Description

BSAPI.DLL is main library if BSAPI SDK. It provides a set of functions which can read data from supported
fingerprint sensor devices, and which apply various biometric algorithms to these data.

The main header file declaring functions of BSAPI is bsapi.h. The header includes bstypes.h and bserror.h which
declare types and error status codes. The latter two headers are shared with the other libraries the SDK consists of.

2.1.1 Supported FM Devices

BSAPI.DLL supports these devices:

• Intelligent readers based on the following chipsets: TCD21 (TFM), TCD41, TCD42, TCD50A, TCD50D
(TCD58) and TCD51A (TCD59). This includes EIKON, EIKON II and EIKON-To-Go external readers.

• Sensor-only readers based on the following sensors: TCS4B, TCS4C, TCS5B, TCS4K, TCS5D

• Area sensor readers: TCRU (using ST9 controller), EIKON Touch (using STM32 controller), TCEFC/TCEFD
modules (using TCD50D controller)

• SONLY devices with area sensors based on Cypress. (Supported only on Windows)

On Windows, BSAPI.DLL supports also biometry-enabled composite devices manufactured by 3rd parties, if
these conditions are met:

• The composite device has AuthenTec sensor embedded, which is supported by BSAPI.

• The manufacturer of the composite device provides original AuthenTec driver, which is modified for use with
the composite device (e.g. it is registered for VID and PID of the composite device).

If such driver is installed, BSAPI "sees" such devices in enumeration with ABSEnumerate and can open the device
with ABSOpen as any normal AuthenTec device.

If you develop application supposed to work only with the composite device, you can filter the set of devices the
BSAPI sees by specifying VID and PID in DSN string parameter of ABSEnumerate and ABSOpen.

2.1.2 Error Handling

Almost all BSAPI.DLL functions return a status code ABS_STATUS. Code ABS_STATUS_OK (zero) means
success. All other values denote an error condition.

You may call ABSGetLastErrorInfo to retrieve more information about the error condition. Note that the informa-
tion is intended as a help for application and library developers and it's not intended to be presented to end users.

If any BSAPI.DLL function fails, it frees any resources it might allocate. Values of output parameters are defined
only if the function succeeds i.e. if it returns ABS_STATUS_OK.

2.1.3 Memory Management

Some BSAPI.DLL functions allocate memory returned via output parameter to the calling application. The appli-
cation must use function ABSFree to free memory allocated by BSAPI.DLL in these cases.

Note the output parameters have a defined value only when the function returns ABS_STATUS_OK. I.e. in a
case the BSAPI function fails, the output parameters have undefined values and no memory is allocated for output
parameters hence you should not call ABSFree.

BSAPI Reference Manual

8

2.1.4 Interactive Operations

Some of the BSAPI.DLL functions expect users interaction with FM. All these functions are collectively called
interactive operations in this document. Interactive operation functions share the way how the interaction is
achieved.

All those function have pointer to structure ABS_OPERATION as their second parameter (just after handle of
a session). When you call any interactive operation function, it blocks until the operation finishes or until it is
canceled. While the operation is processing, callback specified by ABS_OPERATION is repeatedly called so that
the application can provide feedback to the end user.

Note that the callback implementation has some limitations. The behavior is not defined if you don’t respect them:

• You cannot throw exceptions from the callback (if you use BSAPI from C++ or other language which supports
them).

• You cannot call majority of BSAPI functions from the callback. You can safely call only ABSFree, AB-
SCancelOperation and ABSGetLastErrorInfo from the callback.

Since version 3.5 of BSAPI, the callback is always called from a thread context where the interactive operation
function has been called. (In older versions of BSAPI, this was not guaranteed).

You may cancel any running interactive operation with ABSCancelOperation if needed. You may call this function
either from the callback itself or from any other thread if you associated unique operation ID to the operation you
need to cancel.

The operation ID serves exactly this purpose: it names the operation so that it can be canceled from another
thread. When using this approach, the application developer has to use a consistent policy in his code to man-
age the operation IDs. The application cannot start multiple concurrent interactive operations with the same
ID (with exception of zero, which creates an anonymous operation which cannot be canceled from another
thread). Any attempt to start new interactive operation with ID already used in another thread will result in error
ABS_STATUS_INVALID_PARAMETER.

Note the structure ABS_OPERATION contains member Flags which can further influence how the callback is
called.

2.1.5 Multithreading

In general, BSAPI.DLL is thread-safe. You can call BSAPI.DLL functions concurrently from multiple threads,
including multiple biometric operations on one FM. BSAPI automatically schedules the operations communicating
with the FM. See also Scheduling of Biometric Operations.

The only exception are functions ABSInitialize, ABSInitializeEx and ABSTerminate. These three functions are
not thread-safe. This is usually not a problem, because they are called as part of application initialization and
termination respectively.

2.1.6 Scheduling of Biometric Operations

BSAPI automatically schedules operations which need to communicate with single FM. When multiple such op-
erations are run concurrently from multiple threads, BSAPI automatically suspends one of the operations until the
other operation stops the communication with the FM.

When interactive operation is being suspended, its corresponding callback function receives mes-
sage ABS_MSG_PROCESS_SUSPEND and then, after the operation is being resumed, message
ABS_MSG_PROCESS_RESUME.

BSAPI Reference Manual

9

Short-term non-interactive functions cummunicating with FM (e.g. ABSSetAppData or ABSSetLED) have the
highest priority, i.e. calling them will temporarily suspend any ongoing interactive operation.

Navigation (ABSNavigate) has the lowest priority, so the navigation is suspended by any other operation com-
municating with FM.

2.1.7 Anti-latent Checking

In general the goal of the anti-latent check is to minimize the negative impact of residual fingerprint left on the
surface of area sensor. This negative impact has two forms – security (risk of a false accept) and convenience (risk
of false reject due to the lowered image quality).

Note that for strip sensors, such checking is never performed because there is no such danger, so for these sensors
the API automatically reports the last scan as not being latent.

You can manually perform the anti-latent checking by calling function ABSCheckLatent. The function is able to
perform two basic operations:

• Check operation: The most recent finger scan (in a context of session with fingerprint device) is compared
with the data of last stored scan in the device's memory.

• Store operation: Store the most recent scan to device's memory.

Caller can specify the desired operation using flags ABS_LATENT_OP_CHECK and/or
ABS_LATENT_OP_STORE respectivelly. If both of the two flags are specified (or when none is specified, as
it is considered the default behavior), the function performs combination of both operations. As a first step the
check operation is performed, and if the most recent scan was not detected as latent one, it is then stored for any
subsequent anti-latent checking.

Aside from the function ABSCheckLatent, there is also an implicit anti-latent checking built-in into ABSEnroll
and ABSVerify operations. They both behave use both: the check operation as well as the store operation. This
implicit anti-latent checking can be disabled by setting global parameter ABS_PARAM_LATENT_CHECK with
ABSSetGlobalParameter.

As you can see, you should never perform the check operation just after store operation, as then the most recent
swipe will be evaluated as a latent one. The reason is quite obvious: the most recent swipe is compared with copy
of the same data. As a follow up, you should never call ABSCheckLatent just after ABSEnroll or ABSVerify
(unless you have disabled the implicit anti-latent checking).

2.1.8 Power Control

For some end users, especialy those using mobile deiveces as notebooks or netbooks, power consumption is an
important aspect. BSAPI allows applications to control power consumtption of fingerprint devices which support
it.

In general, AuthenTec devices support these three modes of power control:

• Full-power mode: The device is full powered and immediately ready for operation.

• Half-power mode: The device as a whole is powered, but is firmware/software decided to power-off sensor
in the device (the sensor is the highest power consumer). When needed, the device automatically reenables
poweringthe sensor when it detects that user places a finger on it (HW finger detection).

• Low-power mode: The devices allows the system to put it into selective suspend. Note BSAPI supports this
mode only on Windows platforms currently.

BSAPI has several global parameters which control how BSAPI manages the power consumption of the de-
vice. By default (when ABS_PARAM_POWER_SAVE_MODE is set to 2), BSAPI tracks user's activity and

BSAPI Reference Manual

10

keeps full-power mode only until timeout ABS_PARAM_POWER_SAVE_ACTIVE_TO_SLEEP_TIMEOUT
elapses and then switches the device to hal-power-mode. If there is still no user activity until
ABS_PARAM_POWER_SAVE_TIMEOUT occures, the device is switched to low-power regime.

Optionally (by setting ABS_PARAM_POWER_SAVE_RESET_ON_OPERATION_START), the power saving
timeouts can be reset whenever an interractive operation starts. I.e. when enabled, the operation then always starts
in full-power mode.

Application can explicitely enable/disable low-power mode by setting ABS_PARAM_POWER_SAVE_MODE
to 0 or 1. Furthermore functions ABSRawGrab and ABSRawGrabImage allow setting of the power mode for
duration of the function call via its pProfileData parameter.

With global parameter ABS_PARAM_POWER_SAVE_CHECK_KEYBOARD, the application can control
whether by the "user activity" only activity on fingerprint sensor is understood, or activity on keyboard and mouse
as well (Windows only).

2.1.9 Windows Service Compatibility Mode

On Windows, BSAPI.DLL can be initialized in a Windows service compatible mode. To achieve this, call AB-
SInitalizeEx with the flag ABS_INIT_FLAG_NT_SERVICE. Using BSAPI.DLL in a context of service without
this step leads to an undefined behaviour.

Keep in mind that the service compatible mode has some limitations:

• BSAPI does not allow to open remote sessions via Citrix or Terminal Services. See chapter Support for Ter-
minal Services and Citrix for details.

• BSAPI then never treats keyboard or mouse as an user activity with-in the power control context, regardless
ABS_PARAM_POWER_SAVE_CHECK_KEYBOARD value. See chapter Power Control for details.

2.1.10 Support for Terminal Services and Citrix

This section applies only for Windows platform.

Since version 3.5, BSAPI supports opening fingerprint sensor devices on remote sessions (via Terminal Services
or Citrix). This means that user can work remotely and use a sensor connected to the client computer (i.e. where
the user is really sitting) with the application running on the remote computer (server).

Note however that the Citrix and Terminal Services clients required for thsi feature to work are available only in
full BSAPI SDK package. The clients are not provided within BSAPI Lite SDK.

2.1.10.1 Application Developer's Point of View

In context of Terminal Services and Citrix, there are three modes of BSAPI operation. Developer determines
the mode by using two flags of ABSInitializeEx function: ABS_INIT_FLAG_FORCE_LOCAL_SENSOR and
ABS_INIT_FLAG_FORCE_REMOTE_SENSOR. For an obvious reason, these flags cannot be used together.

When none of the flags is set (or when using ABSInitialize), an automatic mode is used. In this mode, local
fingerprint devices are used when the application is not running in a remote session; and remote devices when
the application is running in a remote session (either Terminal Services or Citrix). When the session state changes
(e.g. user disconnects from the remote session of Terminal Services and moves to a computer where he continues
to work with the application locally), all subsequent calls to BSAPI.DLL working with the fingerprint device will
fail with ABS_STATUS_REMOTE_COMM_ERROR.

When ABS_INIT_FLAG_FORCE_LOCAL_SENSOR is used, BSAPI never opens a remote fingerprint device
and will always work only with the devices connected locally to the computer where the application is running.

BSAPI Reference Manual

11

When ABS_INIT_FLAG_FORCE_REMOTE_SENSOR is used, BSAPI will always work only with remote de-
vices (on the client side). When the application is not actually running in a remote session, function ABSOpen
will always fail with ABS_STATUS_REMOTE_COMM_ERROR.

Note that usage of remote fingerprint devices in a NT service compatible mode is not supported. Hence when
flag ABS_INIT_FLAG_NT_SERVICE is used with ABSInitializeEx, then automatic mode is equivalent to
ABS_INIT_FLAG_FORCE_LOCAL_SENSOR; and ABS_INIT_FLAG_FORCE_REMOTE_SENSOR cannot
be used at all.

2.1.10.2 Remote Sessions and Error Handling

In case of problems with communication to the remote sensor, communication always ends with
ABS_STATUS_REMOTE_COMM_ERROR status code.

This includes the following situations:

• BSAPI.DLL was initialized in the default automatic mode and state of the OS session has changed. E.g. the
user was using the BSAPI application locally and after some time he moved himself to different computer
and connected remotely via Terminal Services to the same session. Since that point any subsequent calls
into BSAPI will fail with ABS_STATUS_REMOTE_COMM_ERROR as (according to the automatic mode),
the BSAPI now rejects to use the local sensor, until the application reopens BSAPI session with any device
connected to the client computer.

• BSAPI.DLL was initialized with ABS_INIT_FLAG_FORCE_REMOTE_SENSOR, but the application is not
actually running in the remote session context (neither Terminal Services, nor Citrix).

• Some (temporary or permanent) network communication problem occurs.

Applications typically response to this error by closing the actual BSAPI session with ABSClose and optionally
attempting to open new BSAPI session with ABSOpen. This function may still fail with this error code if the error
condition persists. The application cannot assume it will be able to open exactly the same device.

Note that when working only with local sensors (ABS_INIT_FLAG_FORCE_LOCAL_SENSOR), this error nev-
er occurs. Even when the application is running in the remote session context, it will work strictly with devices
connected locally (i.e. to the computer where the application is running).

When BSAPI attempts to use remote fingerprint devices (either in automatic mode, or by using
ABS_INIT_FLAG_FORCE_REMOTE_SENSOR flag), and the AuthenTec client is not installed on the client
side, a call to ABSOpen will fail with ABS_STATUS_NOT_SUPPORTED.

2.1.10.3 Supported Environments

Terminal Services:

• Client side: Windows XP, Windows Vista, Windows 7

• Server side: Windows XP, Windows Vista, Windows Server 2003, Windows Server 2008, Windows Server
2008R2

Citrix:

• Client side: Windows XP, Windows Vista, Windows 7; with Citrix XenApp plugin 11

• Server side: Windows Server 2003 or Windows Server 2008; with Citrix XenApp server 4.5

2.1.10.4 Setup Instructions

Terminal Services:

BSAPI Reference Manual

12

1. On the server, enable the Terminal Services support in the system. Right-click My Computer, select Prop-
erties. A dialog is displayed. Select the Remote tab and check the "Allow users to connect remotely to this
computer" checkbox .

2. On the client, install the AuthenTec Terminal Services Client (tsclient.msi). You should not be connected to
the remote desktop at the time of the installation. Note you have to install a 32-bit version of the client on a
32-bit system, and a 64-bit version of the client on a 64-bit system.

3. On the client, install the fingerprint device driver and plug the fingerprint device into the computer.

4. On the client, start a Microsoft Remote Desktop client application (you can usually find it in Start >> Programs
>> Accessories). Fill in the name of the computer where the BSAPI application is installed (server) and
connect to it.

5. In the remote desktop, start and use a BSAPI-based application installed on the server. The application will
use the fingerprint device connected to your client computer (unless the application disabled that with the
flag ABS_INIT_FLAG_FORCE_LOCAL_SENSOR).

Citrix:

1. On the server, the Citrix XenApp server must be installed.

2. On the client, the Citrix XenApp plugin must be installed.

3. On the client, install the AuthenTec Citrix Client (tscitrix.msi). You should not be connected to the remote
desktop at the time of the installation. Note there is only a 32-bit version of the client, which works both in
32-bit and 64-bit systems.

4. On the client, install the fingerprint device driver and plug the fingerprint device into the computer.

5. From the client, connect to the server using the Citrix XenApp plugin.

6. In the remote desktop, start and use a BSAPI-based application installed on the server. The application will
use the fingerprint device connected to your client computer (unless the application disabled that with the
flag ABS_INIT_FLAG_FORCE_LOCAL_SENSOR).

2.1.11 Blinking with LEDs

Some AuthenTec devices are equipped with one or more LEDs. Their blinking can be part of friendly interaction
with users. BSAPI provides functions to control the blinking of those LEDs. Please note that some devices are also
equipped with LEDs controlled directly by the device itself (HW). Such LEDs cannot be controlled with BSAPI.

Note however that level of support varies a lot among different HW devices.

Actually there are two pairs of functions controlling the LEDs.

Older ABSSetLED() and ABSGetLED() are easier to use, but allow to work properly only with some (simpler)
blinking modes. Newer ABSSetLedEx() and ABSGetLedEx() offer more versability.

It is recommanded to not mix their use in a single application. I.e. you should choose whether you rather use the
older ABSSetLED() and ABSGetLED(), or the newer counterparts.

New application should prefer the newer and more powerful functions ABSSetLedEx() and ABSGetLedEx().

There are several blinking modes supported.

Also remember that when some devices enter a deep sleep or standby, the LEDs will be turned off for the duration
of the sleep. After wakeup the LEDs will resume the status they had before the sleep (including the blinking).

BSAPI Reference Manual

13

2.1.11.1 Mode ABS_LED_MODE_AUTO

This mode is set by default after ABSOpen(). In this mode the blinking of LEDs is completely controlled by
BSAPI. Exact blinking behavior can differ in various BSAPI versions, and it is also device-dependent.

There are no additional parameters describing this mode. In case of ABSSetLED(), you should set dwLED1 and
dwLED2 to zero. With ABSSetLedEx() the parameter pLedParam should be set to NULL or point to empty
ABS_DATA.

2.1.11.2 Mode ABS_LED_MODE_READER

In this mode the LED blinks automatically, and blinking is completely controlled by reader. Exact blinking pattern
is completely device-dependent.

2.1.11.3 Mode ABS_LED_MODE_MANUAL

This mode allows to control up to two LEDs installed on the device manually by the application.

Behavior of each of the two LEDs is described by one doubleword value (ABS_DWORD). Bits of the value
specify blinking pattern and duration of the state described by each bit of the pattern:

• Bits 0-15: Blinking pattern. The device iterates over the bits (one bit in one clock tick as determined by bits
16-19, see below) and turns the LED on (bit value is 1) or off (bit value is 0). Bit 0 is displayed first, Bit 1
in the next clock tick etc.

• Bits 16-19: Blinking clock duration exponent. Value 0 stops the blinking, value 1 = 1 msec per a pattern bit,
value 2 = 2 msec per a pattern bit, value 3 = 4 msec per a pattern bit, … value 15 = 16384 sec per a pattern

bit (value N = 2N-1 msec per a pattern bit).

I.e. to turn a LED permanently ON set all bits to one. To switch a LED permanently OFF reset all bits to zero.

In case of the older functions ABSSetLED() and ABSGetLED(), the doublewords describing the LED behavior
correspond to paramaters dwLED1 and dwLED2, or pdwLED1 and pdwLED2 respectivelly.

Newer functions ABSSetLedEx() and ABSGetLedEx() use members Led1 and Led2 of the structure
ABS_LED_PARAMS_MANUAL, wrapped in ABS_DATA via the parameter pLedParams or ppLedParams re-
spectivelly.

Note specific for SONLY devices: The blinking pattern can only be one of these values: 0x0000, 0x0001,
0x0003, 0x007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff, 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff
and 0xffff. The value of period duration exponent can be only 0, 1, 2, 3, 4, 5, 6, 7, 8 and 15 for SON-
LY devices. All other values are not supported by SONLY devices and using them will lead to error
ABS_STATUS_INVALID_PARAMETER.

2.1.11.4 Mode ABS_LED_MODE_MANUAL2

This advanced manual mode allows very detailed settings of up to three LEDs. The behavior is described by the
structure ABS_LED_PARAMS_MANUAL2.

Note that this mode is only supported by TCS5D devices. Attempt to use this mode with other device will fail.

Older function ABSSetLED() cannot be used to set this mode. Furthermore if this mode is set, then calling ABS-
GetLED() only sets pdwMode to indicate this mode is active, but the paramaters are not retrieved to the caller. If
your application uses this mode, you should not use these functions.

Newer functions ABSSetLedEx() and ABSGetLedEx() use the structure ABS_LED_PARAMS_MANUAL2,
wrapped in ABS_DATA via the parameter pLedParams or ppLedParams respectivelly.

BSAPI Reference Manual

14

2.1.11.5 Mode ABS_LED_MODE_OFF

This mode just turns all LEDs (controlled from SW) permanently off.

There are no additional parameters describing this mode. In case of ABSSetLED(), you sghould set dwLED1
and dwLED2 to zero. With ABSSetLedEx() the parameter pLedParam should be set to NULL or point to empty
ABS_DATA.

2.2 Application General Functions

The Application General Functions allow to initialize the BSAPI library, open and close logical connections to
FM and perform other miscellaneous tasks.

2.2.1 ABSInitialize

ABS_STATUS ABSInitialize(
 void
)

Description Initialize the BSAPI.DLL library. BSAPI.DLL must be initialized before you can call any other
function. It is called typically during application startup.

Note that when using BSAPI.DLL in a context of Windows NT service, it cannot be initialized
with this function. Instead use ABSInitializeEx with flags ABS_INIT_FLAG_NT_SERVICE.

Calling ABSInitialize is equivalent to calling ABSInitializeEx with flags set to zero.

Return value ABS_STATUS Result code. ABS_STATUS_OK (0) means success.

BSAPI Reference Manual

15

2.2.2 ABSInitializeEx

ABS_STATUS ABSInitializeEx(
 IN ABS_DWORD dwFlags
)

Description Initialize the BSAPI.DLL library. BSAPI.DLL must be initialized before you can call any other
function. It is called typically during application startup.

This function if more general version of ABSInitialize.

Parameters

dwFlags On Windows, flags ABS_INIT_FLAG_NT_SERVICE,
ABS_INIT_FLAG_FORCE_LOCAL_SENSOR and
ABS_INIT_FLAG_FORCE_REMOTE_SENSOR are supported. On
other systems, no flags are currently supported.

See Flags for ABSInitializeEx (ABS_INIT_FLAG_xxxx) and Sup-
port for Terminal Services and Citrix for more information.

Return value ABS_STATUS Result code. ABS_STATUS_OK (0) means success.

BSAPI Reference Manual

16

2.2.3 ABSTerminate

ABS_STATUS ABSTerminate(
 void
)

Description Uninitialize the BSAPI.DLL library. Must not be called while any connections to FM are still
open. It is not obligatory to call this function, if the BSAPI.DLL library should be kept initialized
until the program exits, but it is recommended practice to do so.

Return value ABS_STATUS Result code. ABS_STATUS_OK (0) means success.

BSAPI Reference Manual

17

2.2.4 ABSOpen

ABS_STATUS ABSOpen(
 IN const ABS_CHAR *pszDsn
 OUT ABS_CONNECTION *phConnection
)

Description Open a new session with a FM.

Parameters

pszDsn Zero-terminated ASCII string describing the FM connection parame-
ters.

phConnection Resulting connection handle. At the end of the connection it should
be closed with .

Return value ABS_STATUS Result code. ABS_STATUS_OK (0) means success.

Remarks To close the connection you should call ABSClose.

To open a connection through USB, no extra parameters are necessary.

Example:
 DSN = "usb"

"device=X" (for USB only) This option can be used for opening specified device if more
than one are simultaneously attached to the system. X is the device name string identifying un-
ambiguously required device and it can be obtained from call of function ABSEnumerateDe-
vices (actually ABSEnumerateDevices will give whole DSN string). Note that X is dependent
on host current system configuration.

Example:
DSN = "usb,device=\\?\usb#vid_0483&pid_2016#5&20890ddc&0&1#
{d5620e51-8478-44bd-867e-aac02f883a00}"

BSAPI Reference Manual

18

2.2.5 ABSClose

ABS_STATUS ABSClose(
 IN ABS_CONNECTION hConnection
)

Description Close a connection previously opened by ABSOpen.

Parameters

hConnection Connection handle of the connection to be closed.

Return value ABS_STATUS Result code. ABS_STATUS_OK (0) means success.

Remarks Every successful call of ABSOpen should be paired with a call to ABSClose.

BSAPI Reference Manual

19

2.2.6 ABSEnumerateDevices

ABS_STATUS ABSEnumerateDevices(
 IN const ABS_CHAR *pszEnumDsn
 OUT ABS_DEVICE_LIST **ppDeviceList
)

Description Enumerate currently connected fingerprint devices.

Parameters

pszEnumDsn Zero terminated ASCII string describing the connection interface,
where the enumeration should be performed.

For example to enumerate all devices connected to USB use string
"usb".

ppDeviceList Address of the pointer, which will be set to point to the list of found
devices. The data has to be freed by a call to ABSFree.

Return value ABS_STATUS Result code. ABS_STATUS_OK (0) means success.

Remarks Note: Currently only devices on USB interface can be enumerated.

BSAPI Reference Manual

20

2.2.7 ABSGetDeviceProperty

ABS_STATUS ABSGetDeviceProperty(
 IN ABS_CONNECTION hConnection
 IN ABS_DWORD dwPropertyId
 OUT ABS_DATA **ppPropertyData
)

Description Return data describing some property of device associated with the current open session.

Parameters

hConnection Handle to the connection to FM.

dwPropertyId One of ABS_DEVPROP_xxxx constants, specifying what device
property the caller is interested in.

ppPropertyData Address of a pointer which will be set to point to a data block. The
content of the data depends on dwPropertyId. The data has to be freed
by a call to ABSFree.

See documentation of the constants for specific information.

Return value ABS_STATUS Result code. ABS_STATUS_OK (0) means success.

BSAPI Reference Manual

21

2.2.8 ABSFree

void ABSFree(
 IN void *Memblock
)

Description Use this function to releasing memory allocated by other BSAPI.DLL functions.

Parameters

Memblock Address of a memory block to be released. It has no effect if this pa-
rameter is set to NULL.

BSAPI Reference Manual

22

2.3 Biometric Functions

We will describe the biometric functions in this chapter.

2.3.1 ABSEnroll

ABS_STATUS ABSEnroll(
 IN ABS_CONNECTION hConnection
 IN ABS_OPERATION *pOperation
 OUT ABS_BIR **ppEnrolledTemplate
 IN ABS_DWORD dwFlags
)

Description Scan the live finger, process it into a fingerprint template and return it to the caller.

Parameters

hConnection Handle to the connection to FM.

pOperation See description of ABS_OPERATION.

ppEnrolledTemplate Address of the pointer, which will be set to point to the resulting tem-
plate (BIR). The template has to be discarded by a call to ABSFree.

dwFlags Reserved for future use. Set to zero.

Return value ABS_STATUS Result code. ABS_STATUS_OK (0) means success.

BSAPI Reference Manual

23

2.3.2 ABSVerify

ABS_STATUS ABSVerify(
 IN ABS_CONNECTION hConnection
 IN ABS_OPERATION *pOperation
 IN ABS_DWORD dwTemplateCount
 IN ABS_BIR **pTemplateArray
 OUT ABS_LONG *pResult
 IN ABS_DWORD dwFlags
)

Description This function captures sample from the FM, processes it into template and compares it with
templates, specified by the pTemplateArray parameter and finds out the first template which
matches the swiped finger.

Parameters

hConnection Handle to the connection to FM.

pOperation See description of ABS_OPERATION.

dwTemplateCount Count of templates in the pTemplateArray.

pTemplateArray Pointer to the array of pointers to templates.

pResult Pointer to memory location, where result of the comparing will be
stored. The result is index into the pTemplateArray, determining the
matching template, or -1 if no template matches.

dwFlags Bitmask specifying flags, which modify slightly behavior of the func-
tion.

This function supports flags ABS_FLAG_NOTIFICATION and
ABS_FLAG_AUTOREPEAT.

If ABS_FLAG_NOTIFICATION is set, the verification operation
does not shows any GUI feedback until the finger is swiped. This can
be useful for applications doing their own work; and only when user
swipes, the application processes some special action. Until the user
swipes, he is not disrupted with any dialog.

Showing/hiding of the dialog is controlled by messages
ABS_MSG_DLG_SHOW and ABS_MSG_DLG_HIDE.

If flag ABS_FLAG_AUTOREPEAT is used, the verification is auto-
matically restarted when the user's swipe does not match any template
in pTemplateArray. This is better then calling the function in a loop
until the user's swipe matches some template in the pTemplateArray,
because this can prevent a GUI feedback dialog from hiding and show-
ing between the calls.

Return value ABS_STATUS Result code. ABS_STATUS_OK (0) means success.

BSAPI Reference Manual

24

2.3.3 ABSVerifyMatch

ABS_STATUS ABSVerifyMatch(
 IN ABS_CONNECTION hConnection
 IN ABS_BIR *pEnrolledTemplate
 IN ABS_BIR *pVerificationTemplate
 OUT ABS_BOOL *pResult
 IN ABS_DWORD dwFlags
)

Description Compares whether two given templates match or not.

Parameters

hConnection Handle to the connection to FM.

pEnrolledTemplate The fiest template to be compared.

In the most common situation, when a template with enrollment pur-
pose is being matched with a template with another purpose, the en-
rollment template has to be passed as this parameter.

pVerificationTemplate The second template to be compared.

In the most common situation, when a template with enrollment pur-
pose is being matched with a template with another purpose, the latter
template has to be passed as this parameter.

pResult Output parameter to be set to result of the comparing. Set to
ABS_TRUE if the two BIRs do match and ABS_FALSE if they do
not.

dwFlags Reserved for future use. Set to zero.

Return value ABS_STATUS Result code. ABS_STATUS_OK (0) means success.

BSAPI Reference Manual

25

2.3.4 ABSCapture

ABS_STATUS ABSCapture(
 IN ABS_CONNECTION hConnection
 IN ABS_OPERATION *pOperation
 IN ABS_DWORD dwPurpose
 OUT ABS_BIR **ppCapturedTemplate
 IN ABS_DWORD dwFlags
)

Description This function captures sample for the purpose specified and creates a new fingerprint template
from it.

Parameters

hConnection Handle to the connection to FM.

pOperation See description of ABS_OPERATION.

dwPurpose A value indicate a purpose of the biometric data capture.

It can be either ABS_PURPOSE_ENROLL or
ABS_PURPOSE_VERIFY. ABS_PURPOSE_UNDEFINED is not
allowed.

Note that calling ABSCapture() with dwPurpose set to
ABS_PURPOSE_ENROLL is obsolete and it is functionally equiva-
lent to calling ABSEnroll().

ppCapturedTemplate Pointer which is set to newly allocated template. Caller is responsible
to release the memory with ABSFree.

dwFlags Bitmask specifying flags, which modify slightly behavior of the func-
tion.

This function supports only flag ABS_FLAG_NOTIFICATION. If it
is set, the verification operation does not show any GUI feedback until
the finger is swiped. This can be useful for applications doing their
own work; and only when user swipes, the application processes some
special action. Until the user swipes, he is not disrupted with any di-
alog.

Showing/hiding of the dialog is controlled by messages
ABS_MSG_DLG_SHOW and ABS_MSG_DLG_HIDE.

The flag ABS_FLAG_NOTIFICATION can be used only in case that
dwPurpose is set to ABS_PURPOSE_VERIFY.

Return value ABS_STATUS Result code. ABS_STATUS_OK (0) means success.

BSAPI Reference Manual

26

2.3.5 ABSCheckLatent

ABS_STATUS ABSCheckLatent(
 IN ABS_CONNECTION hConnection
 IN void *pReserved
 OUT ABS_BOOL *pboIsLatent
 IN ABS_DWORD dwFlags
)

Description Perform antilatent check.

Note that ABSEnroll and ABSVerify perform the check implicitely unless it is disabled with
global parameter ABS_PARAM_LATENT_CHECK, so you should not call this function after
ABSVerify() and ABSEnroll() after calling those functions (assuming the global parameter
ABS_PARAM_LATENT_CHECK is turned on).

See chapter Anti-latent Checking for more information.

Parameters

hConnection Handle to the connection to FM.

pReserved Reserved for future use. Set to NULL.

pboIsLatent Pointer to ABS_BOOL, where the result of the check operation is
stored.

It is set to ABS_TRUE, if the latest scanned finger was detected as a
latent finger; ABS_FALSE otherwise.

Note that the value of the output variable is undefined if
the check operation is not performed, i.e. when dwFlags ==
ABS_LATENT_OP_STORE.

dwFlags Flags ABS_LATENT_OP_CHECK and
ABS_LATENT_OP_STORE are supported.

Note that using zero is quivalent to setting both flags
(ABS_LATENT_OP_CHECK | ABS_LATENT_OP_STORE).

When only flag ABS_LATENT_OP_CHECK is set, the function
compares the most recent finger scan with (previously) stored scan
and determines whether the most recent scan is latent or not.

When only flag ABS_LATENT_OP_STORE is set, the most recent
scan is stored so any future checks compare to this scan.

When set to (ABS_LATENT_OP_CHECK |
ABS_LATENT_OP_STORE) or to zero, then both check operation,
and the store operation are performed (in this order).

Return value ABS_STATUS Result code.

BSAPI Reference Manual

27

2.3.6 ABSNavigate

ABS_STATUS ABSNavigate(
 IN ABS_CONNECTION hConnection
 IN ABS_OPERATION *pOperation
 IN ABS_DWORD dwFlags
)

Description Switch FM to navigation mode (a.k.a. biometric mouse).

Not all devices support this mode. If the navigation is not supported by the device,
ABS_STATUS_NOT_SUPPORTED is returned. Please note there are few very old legacy de-
vices where the navigation support is broken. With these devices, the function never sends
ABS_MSG_NAVIGATE_CHANGE messages to the callback, making the navigation mode
unusable.

Remember that the function never returns ABS_STATUS_OK because it does not return until
the function is canceled with ABSCancelOperation (or until an error occurs).

Parameters

hConnection Handle to the connection to FM.

pOperation See description of ABS_OPERATION.

dwFlags Reserved for future use. Set to zero.

Return value ABS_STATUS Result code.

BSAPI Reference Manual

28

2.3.7 ABSDetectFinger

ABS_STATUS ABSDetectFinger(
 IN ABS_CONNECTION hConnection
 IN ABS_OPERATION *pOperation
 IN ABS_DWORD dwDetectPurpose
 IN ABS_DWORD dwFlags
)

Description Detects finger presence or absence on the sensor.

If the finger is detected within given timeout, returns ABS_STATUS_SUCCESS. If the function
is canceled, returns ABS_STATUS_CANCELED. Otherwise ABS_STATUS_TIMEOUT. If
timeout = -1, ABSDetectFinger makes one attempt to (un)detect finger but does not repeat it.
No GUI callbacks are called in this case.

Parameters

hConnection Handle to the connection to FM.

pOperation See description of ABS_OPERATION.

dwDetectPurpose Requested type of operation to be performed.

dwFlags Reserved for future use. Set to zero.

Return value ABS_STATUS Result code.

BSAPI Reference Manual

29

2.4 Image Grabbing Functions

There are 4 functions for retrieving fingerprint image from the sensor, each having its advantages and disadvan-
tages. Here we summarize their differencies among the functions, in order to give you enough information to select
the right one to fulfill your task.

Functions ABSGrab and ABSGrabImage are generally device independent, i.e. you don't need to have exact
knowledge about what the device supports or not.

Functions ABSRawGrab and ABSRawGrabImage are device dependent and allow lower-level tuning of the image
scanning process, including image quality checks and other attributes to be tuned.

Function ABSGrab offers only very limited possibility to choose desired image format, by using or not using a
flag ABS_FLAG_HIGH_RESOLUTION.

Function ABSRawGrab allows to specify exact desired image format in a form of a record in grab profile. To
use this, you have to know what image formats your device actually really supports. See documentation for
ABS_PKEY_IMAGE_FORMAT constant and ABS_IFMT_xxxx constants for more details.

Functions ABSGrabImage and ABSRawGrabImage require that you describe the desired image format in a form
of ABS_IMAGE_FORMAT structure. You can get list of supported formats with function ABSListImageFormats.

Functions ABSGrab and ABSGrabImage ask the user to swipe his finger until the resulted image passes some
internal quality checks, i.e. there is some guaranty that you get image of real fingerprint.

In contrary, functions ABSRawGrab and ABSRawGrabImage return always after the first finger swipe. It's then
callers responsibility to check image quality and (if he desires so) to call the function again.

2.4.1 ABSGrab

ABS_STATUS ABSGrab(
 IN ABS_CONNECTION hConnection
 IN ABS_OPERATION *pOperation
 IN ABS_DWORD dwPurpose
 OUT ABS_IMAGE **ppImage
 IN ABS_DWORD dwFlags
)

Description Grabs image sample from the FM.

Please note that unless an error occurs or it is canceled with ABSCancelOperation, the grab
operation is automatically repeated until an image of some minimal quality is provided.

Parameters

hConnection Handle to the connection to FM.

pOperation See description of ABS_OPERATION.

dwPurpose A value indicate a purpose of the biometric data capture.

It can be any ABS_PURPOSE_xxxx constant.

ppImage Functions sets the pointer to newly allocated sample image.

Use ABSFree to release the allocated memory.

BSAPI Reference Manual

30

dwFlags Only flag ABS_FLAG_HIGH_RESOLUTION is supported.

Return value ABS_STATUS Result code. ABS_STATUS_OK (0) means success.

BSAPI Reference Manual

31

2.4.2 ABSRawGrab

ABS_STATUS ABSRawGrab(
 IN ABS_CONNECTION hConnection
 IN ABS_OPERATION *pOperation
 IN ABS_DWORD dwProfileSize
 IN ABS_PROFILE_DATA *pProfileData
 OUT ABS_IMAGE **ppImage
 OUT ABS_SWIPE_INFO **ppSwipeInfo
 IN ABS_DWORD dwFlags
)

Description Grabs image sample from the FM. This function is similar to ABSGrab, but it is more low level.

It allows to specify some special tuning parameters, thus tuning of the grab operation for specific
purposes is possible. Those flags can specify what quality checks should be run, desired image
format and other options.

Please note that all these options are device specific. Various device models allow to tune var-
ious aspects of the grab operations, to various degree. Please prefer ABSGrab or ABSGrabIm-
age whenever possible.

Unlike ABSGrab this function waits for just one swipe and ends even if the resulting image has
low quality. The caller can use the output parameters to further inspect quality of the resulted
sample image.

Parameters

hConnection Handle to the connection to FM.

pOperation See description of ABS_OPERATION.

dwProfileSize Determines how many properties are in pProfileData.

pProfileData Pointer to first member of profile data array.

See description of ABS_PROFILE_DATA type for more information
about the profile.

ppImage Functions sets the pointer to newly allocated sample image.

Use ABSFree to release the allocated memory.

ppSwipeInfo If used (i.e. not set to NULL), an additional information about the
swipe are provided to the caller.

Use ABSFree to release the returned memory block. See description
of ABS_SWIPE_INFO for more information.

dwFlags Bitmask specifying flags, which modify slightly behavior of the func-
tion. Only flag ABS_FLAG_STRICT_PROFILE is supported.

By default the profile data are respected to the degree possible i.e.
those which are not supported by the device are silently ignored.
In contrast, if flag ABS_FLAG_STRICT_PROFILE is set, the pro-
file data is interpreted in a more strict way and the function returns

BSAPI Reference Manual

32

ABS_STATUS_NOT_SUPPORTED if any specified requested tun-
ing parameter or its particular value is not supported.

Please note that requested image format
(ABS_PKEY_IMAGE_FORMAT) is always interpreted in the strict
way, i.e. the caller has to know which image formats are supported by
the FM he uses.

Return value ABS_STATUS Result code. ABS_STATUS_OK (0) means success.

BSAPI Reference Manual

33

2.4.3 ABSListImageFormats

ABS_STATUS ABSListImageFormats(
 IN ABS_CONNECTION hConnection
 OUT ABS_DWORD *pdwCount
 OUT ABS_IMAGE_FORMAT **ppImageFormatList
 IN ABS_DWORD dwFlags
)

Description Retrieves list of image formats supported by the FM.

Functions ABSGrabImage and ABSRawGrabImage takes image format in the form of
ABS_IMAGE_FORMAT as their parameter.

Parameters

hConnection Handle to the connection to FM.

pdwCount Count of image formats returned.

ppImageFormatList Newly allocated array of image format structures is stored into this
pointer. Use ABSFree to release the memory.

dwFlags Reserved for future use. Set to zero.

Return value ABS_STATUS Result code. ABS_STATUS_OK (0) means success.

BSAPI Reference Manual

34

2.4.4 ABSGrabImage

ABS_STATUS ABSGrabImage(
 IN ABS_CONNECTION hConnection
 IN ABS_OPERATION *pOperation
 IN ABS_DWORD dwPurpose
 IN ABS_IMAGE_FORMAT *pImageFormat
 OUT ABS_IMAGE **ppImage
 OUT ABS_SWIPE_INFO **ppSwipeInfo
 IN void *pReserved
 IN ABS_DWORD dwFlags
)

Description Grabs image sample from the FM.

Please note that unless an error occurs or it is canceled with ABSCancelOperation, the grab
operation is automatically repeated until an image of some minimal quality is provided.

Parameters

hConnection Handle to the connection to FM.

pOperation See description of ABS_OPERATION.

dwPurpose A value indicate a purpose of the biometric data capture.

It can be any ABS_PURPOSE_xxxx constant.

pImageFormat Pointer to structure describing desired image format.

ppImage Functions sets the pointer to newly allocated sample image.

Use ABSFree to release the allocated memory.

ppSwipeInfo If used (i.e. not set to NULL), an additional information about the
swipeare provided to the caller.

Use ABSFree to release the returned memory block. See description
of ABS_SWIPE_INFO for more information.

pReserved Reserved for future use. Set to NULL.

dwFlags Reserved for future use. Set to zero.

Return value ABS_STATUS Result code. ABS_STATUS_OK (0) means success.

BSAPI Reference Manual

35

2.4.5 ABSRawGrabImage

ABS_STATUS ABSRawGrabImage(
 IN ABS_CONNECTION hConnection
 IN ABS_OPERATION *pOperation
 IN ABS_DWORD dwProfileSize
 IN ABS_PROFILE_DATA *pProfileData
 IN ABS_IMAGE_FORMAT *pImageFormat
 OUT ABS_IMAGE **ppImage
 OUT ABS_SWIPE_INFO **ppSwipeInfo
 IN void *pReserved
 IN ABS_DWORD dwFlags
)

Description Grabs image sample from the FM. This function is similar to ABSGrabImage, but it is more
low level.

It allows to specify some special tuning parameters, thus tuning of the grab operation for spe-
cific purposes is possible. Those flags can specify what quality checks should be run and other
options.

Please note that all these options are device specific. Various device models allow to tune vari-
ous aspects of the grab operations, to various degree. Prefer ABSGrab or ABSGrabImage when-
ever possible.

Unlike ABSGrabImage this function waits for just one swipe and ends even if the resulting
image has low quality. The caller can use the output parameters to further inspect quality of
the resulted sample image.

Note that if the grab profile uses key ABS_PKEY_IMAGE_FORMAT, it is ignored, as this
functions always uses the format as specified by pImageFormat parameter.

Parameters

hConnection Handle to the connection to FM.

pOperation See description of ABS_OPERATION.

dwProfileSize Determines how many properties are in pProfileData.

pProfileData Pointer to first member of profile data array.

See description of ABS_PROFILE_DATA type for more information
about the profile.

pImageFormat Poitner to structure describing desired image format.

ppImage Functions sets the pointer to newly allocated sample image.

Use ABSFree to release the allocated memory.

ppSwipeInfo If used (i.e. not set to NULL), an additional information about the
swipeare provided to the caller.

Use ABSFree to release the returned memory block. See description
of ABS_SWIPE_INFO for more information.

BSAPI Reference Manual

36

pReserved Reserved for future use. Set to NULL.

dwFlags Bitmask specifying flags, which modify slightly behavior of the func-
tion. Only flag ABS_FLAG_STRICT_PROFILE is supported.

By default the profile data are respected to the degree possible i.e.
those which are not supported by the device are silently ignored.
In contrast, if flag ABS_FLAG_STRICT_PROFILE is set, the pro-
file data is interpreted in a more strict way and the function returns
ABS_STATUS_NOT_SUPPORTED if any specified requested tun-
ing parameter or its particular value is not supported.

Please note that requested image format
(ABS_PKEY_IMAGE_FORMAT) is always interpreted in the strict
way, i.e. the caller has to know which image formats are supported by
the FM he uses.

Return value ABS_STATUS Result code. ABS_STATUS_OK (0) means success.

BSAPI Reference Manual

37

2.5 Miscellaneous Functions

2.5.1 ABSCancelOperation

ABS_STATUS ABSCancelOperation(
 IN ABS_CONNECTION hConnection
 IN ABS_DWORD dwOperationID
)

Description Cancels a running interactive operation. Function of the canceled operation returns
ABS_STATUS_CANCELED.

Parameters

hConnection Handle to the connection to FM.

dwOperationID ID of the operation to be canceled, or zero to cancel the currently pro-
cessed operation in the current thread.

I.e. zero can be used only from callback to cancel the particular oper-
ation which called the callback. It is the only way how to cancel inter-
active operations which have OperationID set to zero.

See description of member OperationID of structure
ABS_OPERATION for more information.

Return value ABS_STATUS Result code. ABS_STATUS_OK (0) means success.

BSAPI Reference Manual

38

2.5.2 ABSSetAppData

ABS_STATUS ABSSetAppData(
 IN ABS_CONNECTION hConnection
 IN ABS_DATA *pAppData
)

Description Stores arbitrary data on the FM.

The data can be later retrieved with function ABSGetAppData. The data survive across BSAPI
sessions, until the data are overwritten by next call to this function.

Note that maximal length of the data is limited. The limit is device model dependent.

Parameters

hConnection Handle to the connection to FM.

pAppData The data to be stored on the device.

Return value ABS_STATUS Result code. ABS_STATUS_OK (0) means success.

BSAPI Reference Manual

39

2.5.3 ABSGetAppData

ABS_STATUS ABSGetAppData(
 IN ABS_CONNECTION hConnection
 OUT ABS_DATA **ppAppData
)

Description Retrieves the data stored on the FM.

See also description of function SetAppData.

Parameters

hConnection Handle to the connection to FM.

ppAppData Output parameter, to be set to the newly allocated structure
ABS_DATA.

Use ABSFree to release the allocated memory.

Return value ABS_STATUS Result code. ABS_STATUS_OK (0) means success.

BSAPI Reference Manual

40

2.5.4 ABSSetSessionParameter

ABS_STATUS ABSSetSessionParameter(
 IN ABS_CONNECTION hConnection
 IN ABS_DWORD dwParamID
 IN ABS_DATA *pParamValue
)

Description Sets value of session-wide parameter.

These settings influence behavior of certain BSAPI functions called in context of the current
session.

Please note that in the current version all parameters are global and can
be set only with ABSSetGlobalParameter(). Therefore this functions returns
ABS_STATUS_INVALID_PARAMETER as it does not support any dwParamID value cur-
rently.

Parameters

hConnection Handle to the connection to FM.

dwParamID ID of the parameter to set. See description of ABS_PARAM_xxxx
constants.

pParamValue Parameter value. Format and meaning of the data is parameter depen-
dent.

See description of particular ABS_PARAM_xxxx constant, you use
as dwParamID for more information.

Return value ABS_STATUS Result code. ABS_STATUS_OK (0) means success.

BSAPI Reference Manual

41

2.5.5 ABSGetSessionParameter

ABS_STATUS ABSGetSessionParameter(
 IN ABS_CONNECTION hConnection
 IN ABS_DWORD dwParamID
 OUT ABS_DATA **ppParamValue
)

Description Retrieves value of session-wide parameter.

Please note that in the current version all parameters are global and can
be set only with ABSSetGlobalParameter(). Therefore this functions returns
ABS_STATUS_INVALID_PARAMETER as it does not support any dwParamID value cur-
rently.

Parameters

hConnection Handle to the connection to FM.

dwParamID ID of the parameter to retrieve. See description of
ABS_PARAM_xxxx constants.

ppParamValue Output parameter for the retrieved value. The function sets it to point
to newly allocated ABS_DATA.

Use ABSFree to release the memory.

See description of ABS_PARAM_xxxx constants for meaning of par-
ticular values.

Return value ABS_STATUS Result code. ABS_STATUS_OK (0) means success.

BSAPI Reference Manual

42

2.5.6 ABSSetGlobalParameter

ABS_STATUS ABSSetGlobalParameter(
 IN ABS_DWORD dwParamID
 IN ABS_DATA *pParamValue
)

Description Sets value of global-wide parameter.

These settings influence behavior of certain BSAPI functions. Unlike ABSSetSessionParam-
eter, the settings apply to all BSAPI functions called in a context of the process, despite the
current session.

Parameters

dwParamID ID of the parameter to set.

See description of ABS_PARAM_xxxx constants.

pParamValue Parameter value. Format and meaning of the data is parameter depen-
dent.

See description of particular ABS_PARAM_xxxx constant, you use
as dwParamID for more information.

Return value ABS_STATUS Result code. ABS_STATUS_OK (0) means success.

BSAPI Reference Manual

43

2.5.7 ABSGetGlobalParameter

ABS_STATUS ABSGetGlobalParameter(
 IN ABS_DWORD dwParamID
 OUT ABS_DATA **ppParamValue
)

Description Retrieves value of global-wide parameter.

Parameters

dwParamID ID of the parameter to retrieve. See description of
ABS_PARAM_xxxx constants.

ppParamValue Output parameter for the retrieved value. The function sets it to point
to newly allocated ABS_DATA.

Use ABSFree to release the memory.

See description of ABS_PARAM_xxxx constants for meaning of par-
ticular values.

Return value ABS_STATUS Result code. ABS_STATUS_OK (0) means success.

BSAPI Reference Manual

44

2.5.8 ABSSetLED

ABS_STATUS ABSSetLED(
 IN ABS_CONNECTION hConnection
 IN ABS_DWORD dwMode
 IN ABS_DWORD dwLED1
 IN ABS_DWORD dwLED2
)

Description This function allows the application to control the state and behavior of two user interface LEDs,
which can be optionally connected to the FM.

Parameters

hConnection Handle to the connection to FM.

dwMode Mode of the LEDs. Different modes define different behavior of the
LEDs during specific operations, especially the biometrics.

See the remarks below for more details.

dwLED1 Parameter defining the detailed behavior of the 1st LED.

See the remarks below for more details.

dwLED2 Parameter defining the detailed behavior of the 2nd LED.

See the remarks below for more details.

Return value ABS_STATUS Result code. ABS_STATUS_OK (0) means success.

Remarks The parameter dwMode can be set to one of the following constants. The meaning of the pa-
rameters dwLED1 and dwLED2 then depends on the chosen mode.

Mode ABS_LED_MODE_MANUAL:

This mode controls two LEDs of the device (if the device has them) in the manual mode. The
two LEDs blink as specified by the parameters dwLED1 (controsl 1st LED) and dwLED2.
Exact meaning of these parameters is described in the chapter Blinking with LEDs

Mode ABS_LED_MODE_MANUAL2:

This mode cannot be set by the function ABSSetLED. You have to use ABSSetLedEx().

Mode ABS_LED_MODE_AUTO:

In this mode all LEDs are controled automatically by BSAPI.

Set both dwLED1 and dwLED2 to zero.

Mode ABS_LED_MODE_OFF:

This mode causes all LEDs to be permanently turned OFF.

BSAPI Reference Manual

45

Set both dwLED1 and dwLED2 to zero.

BSAPI Reference Manual

46

2.5.9 ABSGetLED

ABS_STATUS ABSGetLED(
 IN ABS_CONNECTION hConnection
 OUT ABS_DWORD *dwMode
 OUT ABS_DWORD *pdwLED1
 OUT ABS_DWORD *pdwLED2
)

Description This function allows the application to query the state and behavior of the two user interface
LEDs, which can be optionally connected to the FM.

For more information about the topic, see also documentation of function ABSSetLED.

Parameters

hConnection Handle to the connection to FM.

dwMode Returns a mode of the LEDs.

See the remarks below for more details.

pdwLED1 Returns a value defining the detailed behavior of the 1st LED.

See the remarks below for more details.

pdwLED2 Returns a value defining the detailed behavior of the 2nd LED.

See the remarks below for more details.

Return value ABS_STATUS Result code. ABS_STATUS_OK (0) means success.

Remarks ABSGetLED returns the LED status as set by the latest call to ABSSetLED or ABSSetLedEx.

If pdwLED1/pdwLED2 are not set to NULL, then depending on the current mode, the double-
words pointed by them are set top the values used when the LEDs were set.

Note that for LED modes which cannot be set by ABSSetLED (i.e. which can only by set
by ABSSetLEdEx, the value of pointed doublewords is undefined. You have to use ABSGe-
tLedEx() to retrieive mroe information about current settings of LEDs in that case.

BSAPI Reference Manual

47

2.5.10 ABSSetLedEx

ABS_STATUS ABSSetLedEx(
 IN ABS_CONNECTION hConnection
 IN ABS_DWORD dwMode
 IN ABS_DATA *pLedParams
)

Description

Parameters

hConnection Handle to the connection to FM.

dwMode Mode of the LEDs. Different modes define different behavior of the
LEDs during specific operations, especially the biometrics.

See the remarks below for more details.

pLedParams Data defining the detailed behavior of the LEDs, depending on the
mode.

See the remarks below for more details.

Return value ABS_STATUS Result code. ABS_STATUS_OK (0) means success.

Remarks The parameter dwMode can be set to one of the following constants. Interpretation of the pa-
rameter pLedParams then depends on the chosen mode.

Mode ABS_LED_MODE_MANUAL:

This mode controls two LEDs of the device (if the device has them) in the man-
ual mode. The parameter pLedParams must point to ABS_DATA containing structure
ABS_LED_PARAMS_MANUAL.

Mode ABS_LED_MODE_MANUAL2:

This mode controls two LEDs of the device (if the device has them) in the man-
ual mode. The parameter pLedParams must point to ABS_DATA containing structure
ABS_LED_PARAMS_MANUAL2.

Mode ABS_LED_MODE_AUTO:

In this mode all LEDs are controled automatically by BSAPI. The pointer pLedParams must
be set to NULL or point to empty ABS_DATA.

Mode ABS_LED_MODE_OFF:

This mode causes all LEDs to be permanently turned OFF. The pointer pLedParams must be
set to NULL or point to empty ABS_DATA.

BSAPI Reference Manual

48

2.5.11 ABSGetLedEx

ABS_STATUS ABSGetLedEx(
 IN ABS_CONNECTION hConnection
 OUT ABS_DWORD *pdwMode
 OUT ABS_DATA **ppLedParams
)

Description

Parameters

hConnection Handle to the connection to FM.

pdwMode Returns a mode of the LEDs. See description of ABSSetLedEx() for
more detailed description.

ppLedParams Output parameter, to be set to the newly allocated structure of
ABS_DATA.

Use ABSFree to release the allocated memory.

Return value ABS_STATUS Result code. ABS_STATUS_OK (0) means success.

BSAPI Reference Manual

49

2.5.12 ABSBinarizeSampleImage

ABS_STATUS ABSBinarizeSampleImage(
 INOUT ABS_IMAGE *pGrayScaleImage
 OUT ABS_IMAGE **ppBinarizedImage
)

Description The function converts gray-scale image (as obtain from callback, ABSGrab or ABSRawGrab)
to binarized form, with only two colors.

I.e. the binarized image sample has ColorCount set to 2. The two colors are then interpreted
as black (1) and white (0). The binarized image is more suitable for displaying to the end-user
because it usually looks better.

Note that the conversion can be taken in-place or to newly allocated image structure depening
if you set the parameter ppBinarizedImage to NULL or not.

Parameters

pGrayScaleImage Pointer to the input, gray-scale image structure.

Please note that this function does not support all image formats. Only
formats having 8 bits per pixel (ABS_IMAGE::ColorCount == 256)
and having resolution 381x381 DPI or 508x508 DPI.

If the ppBinarizedImage is NULL, then the content of this structure
is modified in-place.

ppBinarizedImage Optional output parameter for retrieving the new, binarized sample
image.

If non-NULL, the converted image sample will be placed in newly al-
located buffer pointed by this output parameter. Caller is then respon-
sible for releasing the memory with ABSFree.

If NULL, the original image pGrayScaleImage will be converted in-
place.

Return value ABS_STATUS Result code. ABS_STATUS_OK (0) means success.

BSAPI Reference Manual

50

2.5.13 ABSGetLastErrorInfo

void ABSGetLastErrorInfo(
 OUT ABS_DWORD *pErrorCode
 OUT const ABS_CHAR **ppErrorMessage
)

Description Retrieves additional information about last BSAPI error, which occurred in the current thread.

Please note that information provided by this function is not intended to be displayed to the end
user. The error messages are in English (they are never localized) and they are meant as a hint
for developers to make problem diagnosis easier.

Parameters

pErrorCode Output parameter set to additional system dependent error code.

Depending on system it might be errno or value returned by Get-
LastError on Windows platforms or error code from any lower level
library used by BSAPI.DLL. It might give a hint what's going wrong
when diagnosing the problem.

ppErrorMessage On output this is set to point to a buffer containing zero-terminated
string with textual message.

If no message is provided, it points to empty string so the caller does
not need check it for NULL.

The buffer is managed by BSAPI; do not use ABSFree to release it.

Note that the buffer is valid only until other BSAPI call is performed
in the same thread. After the next call, the buffer may be released or
reused by BSAPI. If you need to remember the message, you have to
copy it into your own buffer.

BSAPI Reference Manual

51

2.5.14 ABSEscape

ABS_STATUS ABSEscape(
 IN ABS_DWORD dwOpcode
 IN ABS_DATA *pInData
 OUT ABS_DATA **ppOutData
)

Description Requests special function to be processed.

Note that opcodes intended for use with ABSSession can not be used with ABSSessionEscape
and vice versa.

Parameters

dwOpcode Code of operation to perform.

Currently only some codes are supported for use by AuthenTec part-
ners. They are not intended for public audience, hence they are not
described here.

pInData Input data, passed to the function requested by dwOpcode.

Format of the data depends on dwOpcode. Can be NULL if the dwOp-
code does not require any input data.

ppOutData Data passed back to the caller, as a result of the operation.

Can be set to NULL if no data are passed back.

Return value ABS_STATUS Result code. ABS_STATUS_OK (0) means success.

BSAPI Reference Manual

52

2.5.15 ABSSessionEscape

ABS_STATUS ABSSessionEscape(
 IN ABS_CONNECTION hConnection
 IN ABS_DWORD dwOpcode
 IN ABS_DATA *pInData
 OUT ABS_DATA **ppOutData
)

Description Requests special function to be processed.

This function differs from ABSEscape in the fact that opcodes supported by this function only
work in a context of single BSAPI session.

Note that opcodes intended for use with ABSSessionEscape can not be used with ABSEscape
and vice versa.

Parameters

hConnection Handle to the connection to FM.

dwOpcode Code of operation to perform.

Currently only some codes are supported for use by AuthenTec part-
ners. They are not intended for public audience, hence they are not
described here.

pInData Input data, passed to the function requested by dwOpcode.

Format of the data depends on dwOpcode. Can be NULL if the dwOp-
code does not require any input data.

ppOutData Data passed back to the caller, as a result of the operation.

Can be set to NULL if no data are passed back.

Return value ABS_STATUS Result code. ABS_STATUS_OK (0) means success.

BSAPI Reference Manual

53

3 BSGUI.DLL Functions

3.1 Using BSGUI.DLL

BSGUI.DLL provides a default ABS_CALLBACK implementation for BSAPI.DLL.

To use the default callback implementation, link your application with both BSAPI.DLL and BSGUI.DLL. Then,
whenever you start any interactive operation, set member Callback of structure ABS_OPERATION to pointer to
function ABSDefaultCallback from BSGUI.DLL.

When installing the application, file BSGUI.ZIP must be placed to the same directory as the BSGUI.DLL.

Please note that BSGUI.DLL (with BSGUI.ZIP) is available only for Windows platform.

3.2 GUI Customization

The BSGUI.DLL library loads graphics from file BSGUI.ZIP.

If you want to customize look and feel of the dialogs provided by BSGUI.DLL, replace some or all images in the
BSGUI.ZIP package and, if necessary, change also layout in BIO.XML inside the BSGUI.ZIP.

3.3 Default Callback Implementation

3.3.1 ABSDefaultCallback

void ABSDefaultCallback(
 IN const ABS_OPERATION *pOperation
 IN ABS_DWORD dwMsgID
 IN void *pMsgData
)

Description Default BSAPI callback implementation.

It provides default implementation of callback, which can be passed into BSAPI interactive
functions via ABS_OPERATION structure. Using this callback instead of your own implemen-
tation provides consistent look and feel across applications.

You should never call this function directly. It's intended only to pass pointer to the function
into the BSAPI functions as member Callback of structure ABS_OPERATION.

For more information, see the documentation of type ABS_CALLBACK and structure
ABS_OPERATION.

Parameters

pOperation Pointer to ABS_OPERATION structure used when calling the inter-
active biometric operation.

The caller of the interactive operation can use member Con-
text of the structure to pass data into the default call-
back. ABSDefaultCallback expects the data in the form of
ABS_DEFAULT_CALLBACK_CONTEXT structure.

BSAPI Reference Manual

54

The Context pointer can be set to NULL. In that case, default behavior
is used.

dwMsgID ID of message. See description of ABS_MSG_xxxx constants.

pMsgData Pointer to data with additional information related with the message.

Its meaning is message dependent. Refer to documentation of specific
ABS_MSG_xxxx constants.

BSAPI Reference Manual

55

3.4 ABS_DEFAULT_CALLBACK_CONTEXT

Structure to be optionally passed as a context data into ABSDefaultCallback.

This allows to tune exact behavior of the default callback implementation. To use it, setup the structure members
and set Context of ABS_OPERATION to address of the structure.

The caller of the biometric operation must guarantee that the pointer to the structure, passed in through
ABS_OPERATION structure, remains valid until the biometric operation is over.

typedef struct abs_default_callback_context {
 ABS_DWORD Version;
 HWND ParentWindow;
 ABS_DWORD Flags;
} ABS_DEFAULT_CALLBACK_CONTEXT

Description

Version Version of the structure. Set to 1.

ParentWindow Set to handle of parent window or NULL.

When set to NULL, actually active window is used as the parent window.

Flags Bitmask of flags. Currently only flag
ABS_DEFAULT_CALLBACK_FLAG_ENABLE_SOUND is supported.

BSAPI Reference Manual

56

3.5 Flags for ABS_DEFAULT_CALLBACK_CONTEXT
(ABS_DEFAULT_CALLBACK_FLAG_xxxx)

The following flag can be used in structure ABS_DEFAULT_CALLBACK_CONTEXT.

ABS_DEFAULT_CALLBACK_FLAG_ENABLE_SOUND 0x1

Enables the callback to play a sound on success.

BSAPI Reference Manual

57

4 BSSRV.DLL Functions

4.1 General Description

BSSRV.DLL is library, which provides access to a biometric operations without a direct need of communication
with fingerprint sensor device. Typical use case is server side of an application of server-client architecture where
clients ask users swipe his finger on fingerprint sensor, but the biometry is performed on the server (where, for
example, a database of fingerprint templates might be managed centraly).

The library uses conventions very similar conventions like BSAPI.DLL. Function declarations are declared in
header bssrv.h. Various types, constants and error codes are shared with BSAPI.DLL.

Note however that the BSSRV.DLL and the header bssrv.h are only available within full BSAPI SDK. Lite version
of the SDK does not contain these files.

4.1.1 Error Handling

Almost all BSSRV.DLL functions return a status code ABS_STATUS. Code ABS_STATUS_OK (zero) means
success. All other values denote an error condition.

You may call ABSSrvGetLastErrorInfo to retrieve more information about the error condition. Note that the in-
formation is intended for application and library developers and it's not intended to be presented to end users.

If any BSSRV.DLL function fails, it frees any resources it might allocate. Values of output parameters are defined
only if the function succeeds i.e. if it returns ABS_STATUS_OK.

4.1.2 Memory Management

Some BSSRV.DLL functions allocate memory returned via output parameter to the calling application. The ap-
plication must use ABSSrvFree to free memory allocated by BSSRV.DLL in these cases.

4.1.3 Multithreading

In general, BSSRV.DLL is thread-safe. You can call BSSRV.DLL functions concurrently from multiple threads.

The only exception are functions ABSSrvInitialize and ABSSrvTerminate. These two functions are not thread-
safe. This is usually not a problem, because they are usually called as part of application initialization and termi-
nation respectively.

4.1.4 BSAPI.DLL and BSSRV.DLL

In general, there should be no need to link one program to both BSAPI.DLL and BSSRV.DLL. If you need to link
with BSAPI.DLL, then there is no need to use BSSRV.DLL in the same program probably.

One exception to the rule might be if you have one program which serves to both purposes in server-client archi-
tecture, i.e. when you have one program binary which is (depending on some configuration) either server or client.

However, if your application is linked with both, BSAPI.DLL and BSSRV.DLL, you cannot to free a memory
allocated by one library with a function from the second. Accordingly you cannot resolve an error condition in
one library with calls to second library.

For example. If you call a BSAPI.DLL function you cannot resolve its error by calling ABSSrvGetLastErrorInfo,
but you have to use ABSGetLastErrorInfo.

4.2 Application General Functions

BSAPI Reference Manual

58

4.2.1 ABSSrvInitialize

ABS_STATUS ABSSrvInitialize(
 void
)

Description Initialize the BSSRV library. Must be called before any other function, typically during of the
application's startup.

Return value ABS_STATUS Result code. ABS_STATUS_OK (0) means success.

BSAPI Reference Manual

59

4.2.2 ABSSrvTerminate

ABS_STATUS ABSSrvTerminate(
 void
)

Description Uninitialize the BSSRV library.

Return value ABS_STATUS Result code. ABS_STATUS_OK (0) means success.

BSAPI Reference Manual

60

4.2.3 ABSSrvGetLastErrorInfo

void ABSSrvGetLastErrorInfo(
 OUT ABS_DWORD *pErrorCode
 OUT const ABS_CHAR **ppErrorMessage
)

Description Retrieves additional information about last BSAPI error, which occurred in the current thread.

Please note that information provided by this function is not intended to be displayed to the end
user. The error messages are in English (they are never localized) and they are meant as a hint
for developers to make problem diagnosis easier.

Parameters

pErrorCode Output parameter set to additional system dependent error code.

Depending on system it might be errno or value returned by Get-
LastError on Windows platforms or any other error code. It might give
developer a hint what's going wrong.

ppErrorMessage On output this is set to point to a buffer containing zero-terminated
string with textual message.

If no message is provided, it points to empty string so the caller does
not need check it for NULL.

The buffer is managed by BSAPI; do not use ABSFree to release it.

Note that the buffer is valid only until other BSAPI call is performed
in the same thread. After the next call, the buffer may be released or
reused by BSAPI. If you need to remember the message, you have to
copy it into your own buffer.

BSAPI Reference Manual

61

4.2.4 ABSSrvFree

void ABSSrvFree(
 IN void *Memblock
)

Description Use this function to releasing memory allocated by other BSSRV.DLL functions.

Parameters

Memblock Address of a memory block to be released. It has no effect if this pa-
rameter is set to NULL.

BSAPI Reference Manual

62

4.3 Server-side Functions

4.3.1 ABSSrvVerifyMatch

ABS_STATUS ABSSrvVerifyMatch(
 IN void *pReserved
 IN ABS_BIR *pEnrolledTemplate
 IN ABS_BIR *pVerificationTemplate
 OUT ABS_BOOL *pResult
 IN ABS_DWORD dwFlags
)

Description Compares whether two given templates match or not.

Parameters

pReserved Reserved for future use. Set to NULL.

pEnrolledTemplate The first template to be compared.

In the most common situation, when a template with enrollment pur-
pose is being matched with a template with another purpose, the en-
rollment template has to be passed as this parameter.

pVerificationTemplate The second template to be compared.

In the most common situation, when a template with enrollment pur-
pose is being matched with a template with another purpose, the latter
template has to be passed as this parameter.

pResult Output parameter to be set to result of the comparing. Set to
ABS_TRUE if the two BIRs do match and ABS_FALSE if they do
not.

dwFlags Reserved for future use. Set to zero.

Return value ABS_STATUS Result code. ABS_STATUS_OK (0) means success.

BSAPI Reference Manual

63

4.4 Miscellaneous Functions

4.4.1 ABSSrvSetGlobalParameter

ABS_STATUS ABSSrvSetGlobalParameter(
 IN ABS_DWORD dwParamID
 IN ABS_DATA *pParamValue
)

Description Sets value of global-wide parameter.

These settings influence behavior of certain BSSRV functions.

Parameters

dwParamID ID of the parameter to set.

See description of ABS_PARAM_xxxx constants.

Please note that only ABS_PARAM_MATCH_LEVEL parameter is
supported.

pParamValue Parameter value. Format and meaning of the data is parameter depen-
dent.

See description of particular ABS_PARAM_xxxx constant, you use
as dwParamID for more information.

Return value ABS_STATUS Result code. ABS_STATUS_OK (0) means success.

BSAPI Reference Manual

64

4.4.2 ABSSrvGetGlobalParameter

ABS_STATUS ABSSrvGetGlobalParameter(
 IN ABS_DWORD dwParamID
 OUT ABS_DATA **ppParamValue
)

Description Retrieves value of global-wide parameter.

Parameters

dwParamID ID of the parameter to retrieve.

See description of ABS_PARAM_xxxx constants.

Please note that only ABS_PARAM_MATCH_LEVEL parameter is
supported.

ppParamValue Output parameter for the retrieved value. The function sets it to point
to newly allocated ABS_DATA.

Use ABSSrvFree to release the memory.

See description of ABS_PARAM_xxxx constants for meaning of par-
ticular values.

Return value ABS_STATUS Result code. ABS_STATUS_OK (0) means success.

BSAPI Reference Manual

65

5 Declarations

5.1 Basic Types

typedef char ABS_CHAR

Signed integer type (1 byte)

typedef unsigned char ABS_BYTE

Unsigned integer type (1 byte)

typedef short ABS_SHORT

Signed integer type (2 bytes)

typedef unsigned short ABS_WORD

Unsigned integer type (2 bytes)

typedef int ABS_LONG

Signed integer type (4 bytes)

typedef unsigned int ABS_DWORD

Unsigned integer type (4 bytes)

typedef int ABS_BOOL

Boolean value (zero, non-zero)

typedef ABS_LONG ABS_STATUS

Return status

typedef ABS_DWORD ABS_CONNECTION

Connection handle. It represents a
session with FM.

BSAPI Reference Manual

66

5.2 Specific Types

5.2.1 ABS_DATA

The ABS_DATA structure is used to associate any arbitrary long data block with the length information.

typedef struct abs_data {
 ABS_DWORD Length;
 ABS_BYTE Data[ABS_VARLEN];
} ABS_DATA

Description

Length Length of the Data field in bytes.

Data[ABS_VARLEN] The data itself, variable length.

BSAPI Reference Manual

67

5.2.2 ABS_BIR_HEADER

The header of the BIR. This type is equivalent to BioAPI's structure BioAPI_BIR_HEADER.

In the typical use the BIR is handled as an opaque data, it is not necessary to know the structure of its header.
However, we document it here for completeness. The values provided below are the standard values used in BIRs
produced by the FM.

Please refer to BioAPI documentation for details.

Note that all members of the ABS_BIR_HEADER are always in little endian byte order. This has two important
impacts:

• The template has exactly same binary representation, when stored to some storage or database, so they may
be used on all platforms despite byte order the platform uses.

• When using values of the structure, you must convert the values to the natural byte order of the platform you
use.

typedef struct abs_bir_header {
 ABS_DWORD Length;
 ABS_BYTE HeaderVersion;
 ABS_BYTE Type;
 ABS_WORD FormatOwner;
 ABS_WORD FormatID;
 ABS_CHAR Quality;
 ABS_BYTE Purpose;
 ABS_DWORD FactorsMask;
} ABS_BIR_HEADER

Description

Length Length of Header + Opaque Data

HeaderVersion HeaderVersion = 1

Type Type = 4 (BioAPI_BIR_DATA_TYPE_PROCESSED)

FormatOwner FormatOwner = 0x12 (STMicroelectronics)

FormatID FormatID = 0

Quality Quality = -2 (BioAPI_QUALITY is not supported)

Purpose Purpose (BioAPI_PURPOSE_xxxx, ABS_PURPOSE_xxxx).

The corresponding BioAPI and BSAPI constants have the same values.

FactorsMask FactorsMask = 0x08 (BioAPI_FACTOR_FINGERPRINT)

BSAPI Reference Manual

68

5.2.3 ABS_BIR

A container for biometric data.

The abbreviation BIR stands for Biometric Identification Record. In BSAPI it represents a fingerprint template, but
potentially can contain other data as well, e.g. audit data. BIR consists of a header, followed by the opaque data and
optionally by a signature. This type is binary compatible with BioAPI's BioAPI_BIR. The only difference is, that
in BioAPI_BIR the data is divided into four separate memory blocks, while ABS_BIR keeps all the data together.

typedef struct abs_bir {
 ABS_BIR_HEADER Header;
 ABS_BYTE Data[ABS_VARLEN];
} ABS_BIR

Description

Header BIR header

Data[ABS_VARLEN] The data composing the fingerprint template.

BSAPI Reference Manual

69

5.2.4 ABS_OPERATION

Holds common data used by all interactive operation functions.

typedef struct abs_operation {
 ABS_DWORD OperationID;
 void* Context;
 ABS_CALLBACK Callback;
 ABS_LONG Timeout;
 ABS_DWORD Flags;
} ABS_OPERATION

Description

OperationID Unique operation ID or zero.

When set to non-zero, the value identifies the operation. You can then use
the ID to cancel the operation with ABSCancelOperation, even from other
thread. Please note that its caller's responsibility to assign the IDs so that in
the context of one session no concurrent interactive operation (i.e. in other
thread) has the same value. Otherwise the operation fails immidiatly with
ABS_STATUS_INVALID_PARAMETER.

If set to zero, you can cancel the operation only from its callback (passing
a zero as the parameter for ABSCancelOperation).

Context User defined pointer, passed into the operation callback.

BSAPI does not interpret nor dereferences the pointed data in any way.

Callback Pointer to application-defined function, implementing operation callback.

This allows application developers to provide user interface which informs
user how the operation processes and prompts him to do something, e.g.
put his finger on the FM sensor.

See documentation of ABS_CALLBACK for more detailed information.

Timeout Timeout of user's inactivity in milliseconds

If the interactive operation expects some user's activity and it's not detected
for the time specified, the operation is interrupted and the operation func-
tion returns ABS_STATUS_TIMEOUT.

Note that operation being in suspended state (i.e. when some other concur-
rent operation acquired the sensor) by definition does not expect user's ac-
tivity on the sensor. Hence the time counting for suspended operation is
held up.

When the user's activity on sensor is detected, the time counter is reset. I.e.
to experience the timeout, the user must not touch the sensor for the period
of time as set by the Timeout value.

BSAPI Reference Manual

70

Value 0 denotes no timeout (user's inactivity never causes the operation to
be interrupted). Value -1 denotes to use the default timeout (device depen-
dent).

Flags Bitmask of flags, tuning the operation process.

See description of constants ABS_OPERATION_FLAG_xxxx for more
information.

BSAPI Reference Manual

71

5.2.5 ABS_PROFILE_DATA

Profile data for tuning raw grab operation (ABSRawGrab).

This allows to set various special modes and attributes of the raw grab, including various FM dependent ones.

Function ABSRawGrab takes pointer to array of structure ABS_PROFILE_DATA. (Other parameter specifies
number of items in the profile array.) Each record in the array is composed of key-value pair.

The key specifies what attribute/parameter of the raw grab operation to tune and the value specifies how to tune
that attribute/parameter. Meaning of the value and range of accepted values depends on the particular key and
capabilities of the FM.

typedef struct abs_profile_data {
 ABS_DWORD Key;
 ABS_DWORD Value;
} ABS_PROFILE_DATA

Description

Key Profile key.It can be any constant ABS_PKEY_xxxx

Value Value, key dependent.

BSAPI Reference Manual

72

5.2.6 ABS_SWIPE_INFO

This structure provides various informations about the swipe, from ABSRawGrab, ABSGrabImage or ABSRaw-
GrabImage functions.

Please note that in future version of BSAPI the ABSRawGrab can return the information about the swipe in other
format, then defined by this structure. See description of ABSRawGrab and its parameter ppSwipeInfo for more
information.

typedef struct abs_swipe_info {
 ABS_DWORD Version;
 ABS_WORD Height;
 ABS_BYTE ReconstructionScore;
 ABS_BYTE ImageScore;
 ABS_DWORD MsgID;
 ABS_DWORD Flags;
 ABS_DWORD BackgroundColor;
} ABS_SWIPE_INFO

Description

Version Version of the structure. Current version is 1.

I.e. if the first four bytes of the returned data is not 1, you cannot interpret
the rest of the other data as structure SWIPE_INFO.

Height Height of the fingerprint image in pixels.

ReconstructionScore Reconstruction quality score, in range 0 - 100.

The higher the value, the higher the quality of the image reconstruction.

ImageScore Image quality score, in range 0 - 100.

The higher the value, the higher the quality of the resulted image.

MsgID Quality feedback message ID.

Depending on the settings of the raw grab profile, various tests qual-
ity checks can be processed during the raw grab operation. If all the
tests pass successfully (or if all of them are disabled) MsgId is set to
ABS_MSG_PROCESS_SUCCESS.

If any quality check failed, the value is set to the most important/relevant
callback message ID (see constants ABS_MSG_QUALITY_xxxx).

Flags Bitmask indicating various aspects of the swipe.

See constants ABS_SWIPE_FLAG_xxxx.

BackgroundColor Background color in the swiped sample image.

Exact color depends on the sample image the ABS_SWIPE_INFO is relat-
ed to. Value of 0 means black color, value (ABS_IMAGE::ColorCount -
1) means white color. Other grayscale colors are spread between black and
white.

BSAPI Reference Manual

73

If the background color could not be determined, BackgroundColor is set
to 0xFFFFFFFF.

BSAPI Reference Manual

74

5.2.7 ABS_IMAGE_FORMAT

Type ABS_IMAGE_FORMAT desribes desired image format for functions ABSGrabImage and ABSRawGra-
bImage.

Use function ABSListImageFormats to retrieve list of available formats.

The resolution is always in DPI (dots per inch). Scan resolution is a resolution of the sensor during the scan. Image
resolution is resolution of the resulted image. They are the same unless the sensor subsamples the scanned image
or when the information about subsampling is not available for the given piece of hardware.

typedef struct abs_image_format {
 ABS_WORD ScanResolutionH;
 ABS_WORD ScanResolutionV;
 ABS_WORD ImageResolutionH;
 ABS_WORD ImageResolutionV;
 ABS_BYTE ScanBitsPerPixel;
 ABS_BYTE ImageBitsPerPixel;
} ABS_IMAGE_FORMAT

Description

ScanResolutionH Horizontal scan resolution, in dots per inch (DPI).

ScanResolutionV Vertical scan resolution, in dots per inch (DPI).

ImageResolutionH Horizonatal resolution of resulted image, in dots per inch (DPI).

ImageResolutionV Vertical resolution of resulted image, in dots per inch (DPI).

ScanBitsPerPixel Scan bits per pixel.

ImageBitsPerPixel Bits per pixel of resulted image.If this value is N, then the resulted
ABS_IMAGE::ColorCount is N-th power of two.

BSAPI Reference Manual

75

5.2.8 ABS_IMAGE

Type ABS_IMAGE holds data representing one sample image of swiped finger.

Functions ABSCapture, ABSGrab and ABSRawGrab use this structure. Also certain messages sent to
ABS_CALLBACK can have sample image in form of this structure passed as additional data.

typedef struct abs_image {
 ABS_DWORD Width;
 ABS_DWORD Height;
 ABS_DWORD ColorCount;
 ABS_DWORD HorizontalDPI;
 ABS_DWORD VerticalDPI;
 ABS_BYTE ImageData[ABS_VARLEN];
} ABS_IMAGE

Description

Width Width of the image in pixels.

Height Height of the image in pixels.

ColorCount Maximal color count of the image.

HorizontalDPI Horizontal resolution of the image (dots per inch).

VerticalDPI Vertical resolution of the image (dots per inch).

ImageData[ABS_VARLEN] Color values of all pixels.

ImageData is an array of (Width * Height) bytes. Each pixel is represented
by one byte. First (Width) bytes represent first row of pixels (from left to
right ordering) and the subsequent row follows one by one, without any
gaps.

Value of each byte denotes a grayscale color. Colors are numbered, 0 mean-
ing black and (colorCount - 1) meaning white. Other gray colors are lin-
early spread in the range between black and white.

BSAPI Reference Manual

76

5.2.9 ABS_LED_PARAMS_MANUAL

Parameters for LED blinking mode ABS_LED_MODE_MANUAL.

typedef struct abs_led_params_manual {
 ABS_DWORD Version;
 ABS_DWORD Led1;
 ABS_DWORD Led2;
 ABS_DWORD Flags;
} ABS_LED_PARAMS_MANUAL

Description

Version Version of this structure. Set to 1.

Led1 LED1 parameters.See the description in the chapter Blinking with LEDs
for its meaning.

Led2 LED2 parameters.See the description in the chapter Blinking with LEDs
for its meaning.

Flags Reserved, set to zero.

BSAPI Reference Manual

77

5.2.10 ABS_LED_PARAMS_MANUAL2

Parameters for LED blinking mode ABS_LED_MODE_MANUAL2.

typedef struct abs_led_params_manual2 {
 ABS_DWORD Version;
 ABS_WORD Drv1_OnPeriod;
 ABS_WORD Drv1_OffPeriod;
 ABS_BYTE Drv1_BrCapHi;
 ABS_BYTE Drv1_BrCapLo;
 ABS_BYTE Drv1_BrStepX;
 ABS_BYTE Drv1_BrStepY;
 ABS_DWORD Drv1_Flags;
 ABS_WORD Drv2_OnPeriod;
 ABS_WORD Drv2_OffPeriod;
 ABS_BYTE Drv2_BrCapHi;
 ABS_BYTE Drv2_BrCapLo;
 ABS_BYTE Drv2_BrStepX;
 ABS_BYTE Drv2_BrStepY;
 ABS_DWORD Drv2_Flags;
 ABS_BYTE Drv3_TruthTable;
 ABS_BYTE Led1_Mapping;
 ABS_BYTE Led2_Mapping;
 ABS_BYTE Led3_Mapping;
 ABS_DWORD Flags;
} ABS_LED_PARAMS_MANUAL2

Description

Version Version of this structure (= 1).

Drv1_OnPeriod Driver 1: Length of "ON" period in 4ms units (range 0-2047).

Drv1_OffPeriod Driver 1: Length of "OFF" period in 4ms units (range 0-2047).

Drv1_BrCapHi Driver 1: Maximum brightness value (range 0-63).

Drv1_BrCapLo Driver 1: Minimum brightness value (range 0-63).

Drv1_BrStepX Driver 1: Length of brightness change step in 4ms units (range 0-63, +1
added).

Drv1_BrStepY Driver 1: Amount levels the LED brightness level will change at each
'BrStepX' (range 0-63).

Drv1_Flags Driver 1: Additional flags, see ABS_LEDDRV_FLAG_xxx.

Drv2_OnPeriod Driver 2: Length of "ON" period in 4ms units (range 0-2047).

Drv2_OffPeriod Driver 2: Length of "OFF" period in 4ms units (range 0-2047).

Drv2_BrCapHi Driver 2: Maximum brightness value (range 0-63).

Drv2_BrCapLo Driver 2: Minimum brightness value (range 0-63).

Drv2_BrStepX Driver 1: Length of brightness change step in 4ms units (range 0-63, +1
added).

Drv2_BrStepY Driver 2: Amount levels the LED brightness level will change at each
'BrStepX' (range 0-63).

Drv2_Flags Driver 2: Additional flags, see ABS_LEDDRV_FLAG_xxx.

BSAPI Reference Manual

78

Drv3_TruthTable Definition of the Boolean combination of Driver 1 and Driver 2 that gen-
erates Driver 3.

• Bit 0: Drv3 value when Drv1=0, Drv2=0

• Bit 1: Drv3 value when Drv1=1, Drv2=0

• Bit 2: Drv3 value when Drv1=0, Drv2=1

• Bit 3: Drv3 value when Drv1=1, Drv2=1

Led1_Mapping LED1 mapping - 0=Drv1, 1=Drv3.

Led2_Mapping LED2 mapping - 0=Drv2, 1=Drv3.

Led3_Mapping LED3 mapping - 0=off, 1=Drv1, 2=Drv2, 3=Drv3.

Flags Reserved, set to zero.

BSAPI Reference Manual

79

5.2.11 ABS_PROCESS_DATA

This structure is a container for additional data associated with ABS_MSG_PROCESS_xxxx messages sent to
callback of an interactive operation.

Note that some message ABS_MSG_PROCESS_xxxx use more specific structure, however all are binary com-
patible with ABS_PROCESS_DATA i.e. pointer to them can be safely cast to pointer to ABS_PROCESS_DATA.

typedef struct abs_process_data {
 ABS_DWORD ProcessID;
} ABS_PROCESS_DATA

Description

ProcessID ID of process stage. See ABS_PROCESS_xxxx constants.

BSAPI Reference Manual

80

5.2.12 ABS_PROCESS_BEGIN_DATA

This structure is a container for additional data associated with ABS_MSG_PROCESS_BEGIN message sent to
callback of an interactive operation.

typedef struct abs_process_begin_data {
 ABS_DWORD ProcessID;
 ABS_DWORD Step;
 ABS_DWORD StepCount;
} ABS_PROCESS_BEGIN_DATA

Description

ProcessID ID of process stage. See ABS_PROCESS_xxxx constants.

Step Step number.

Some operations are composed of multiple steps, e.g. consolidated enroll-
ment where user has to swipe multiple times. First step is always marked
with zero.

StepCount Count of child steps of this process. If the count is not known (e.g. in the
case of dynamic enrollment), then it is set to zero.

BSAPI Reference Manual

81

5.2.13 ABS_PROCESS_PROGRESS_DATA

This structure is a container for additional data associated with ABS_MSG_PROCESS_PROGRESS message sent
to callback of an interactive operation.

typedef struct abs_process_progress_data {
 ABS_DWORD ProcessID;
 ABS_DWORD Percentage;
} ABS_PROCESS_PROGRESS_DATA

Description

ProcessID ID of process stage. See ABS_PROCESS_xxxx constants.

Percentage Determines percentage of the process completeness. The value is in the
range 0 - 100. If the percentage is not applicable to the process, it is set
to 0xffffffff.

BSAPI Reference Manual

82

5.2.14 ABS_PROCESS_SUCCESS_DATA

This structure is a container for additional data associated with ABS_MSG_PROCESS_SUCCESS message sent
to callback of an interactive operation.

typedef struct abs_process_success_data {
 ABS_DWORD ProcessID;
 ABS_IMAGE* SampleImage;
 ABS_BIR* Template;
} ABS_PROCESS_SUCCESS_DATA

Description

ProcessID ID of process stage. See ABS_PROCESS_xxxx constants.

SampleImage Pointer to scanned image.

Can be NULL if no image is associated with the message.

Template Pointer to processed template.

Can be NULL if no template is associated with the message.

BSAPI Reference Manual

83

5.2.15 ABS_NAVIGATION_DATA

This structure is a container for additional data associated with ABS_MSG_NAVIGATE_CHANGE message sent
to callback of an interactive operation.

typedef struct abs_navigation_data {
 ABS_LONG DeltaX;
 ABS_LONG DeltaY;
 ABS_BOOL FingerPresent;
} ABS_NAVIGATION_DATA

Description

DeltaX Change of the virtual pointer’s coordinates, in the horizontal direction.

DeltaY Change of the virtual pointer’s coordinates, in the vertical direction.

FingerPresent ABS_TRUE if finger is present on the sensor, ABS_FALSE otherwise.

BSAPI Reference Manual

84

5.2.16 ABS_DEVICE_LIST_ITEM

Item of the device info list

typedef struct abs_device_list_item {
 ABS_CHAR DsnSubString[260];
 ABS_BYTE reserved[256];
} ABS_DEVICE_LIST_ITEM

Description

DsnSubString[260] String usable as part of DSN for ABSOpen to connect to this device.

reserved[256] Reserved for future use.

BSAPI Reference Manual

85

5.2.17 ABS_DEVICE_LIST

The format of the data returned by ABSEnumerateDevices, it contains info about all enumerated devices. Please
note, that the real output parameter from ABSEnumerateDevices has variable length – array List[] has NumDevices
items.

typedef struct abs_device_list {
 ABS_DWORD NumDevices;
 ABS_DEVICE_LIST_ITEM List[ABS_VARLEN];
} ABS_DEVICE_LIST

Description

NumDevices Number of devices in the list

List[ABS_VARLEN] The list of devices.

BSAPI Reference Manual

86

5.2.18 ABS_CALLBACK

void BSAPI ABS_CALLBACK(
 IN const ABS_OPERATION *pOperation
 IN ABS_DWORD dwMsgID
 IN void *pMsgData
)

Description A type of the callback function that an application can supply to the BSAPI to enable itself to
display GUI state information to user.

The callback is passed into the BSAPI function of interactive operations through
ABS_OPERATION structure. Interactive operations call the callback repeatedly while the op-
eration is in process. Thus the application can react accordingly to the process stage of the op-
eration and update user interface.

Note that exact way when the callback is called can be further determined by member Flags
of ABS_OPERATION.

Most applications will probably implement a callback in a way that it will create a dialog when
first message of a biometric operation appears and then update a text and/or image in the dialog,
according to the messages received. For this reason, BSAPI.DLL delays sending of some mes-
sages if there would be danger that the letter would replace the former too quickly so that end
user would have no chance to catch the message. For example when user swipes incorrectly,
and bad quality of the swipe or of resulted image is detected, the callback is called with appro-
priate feedback message. Then there is some delay before the callback is called again, with a
prompt for new swipe so user has time to see the bad quality feddback.

However this default behavior might not be desired in some other scenarios. For exam-
ple if the callback implementation writes every message to a new line, so user can re-
view complete history of the messages, or when the callback implementation provides
no feedback to the user. In these cases the delays between some subsequent messages
only protract time of the bioemtric operation. To disable all those delays, set the flag
ABS_OPERATION_FLAG_LL_CALLBACK in ABS_OPERATION::Flags.

The second supported flag of ABS_OPERATION related to ABS_CALLBACK is
ABS_OPERATION_FLAG_USE_IDLE. When set, BSAPI.DLL guarantees the callback is
called quite often (about 100 milliseconds). If there is nothing it would report, it uses message
ABS_MSG_IDLE. The only purpose of this is to allow to cancel the operation from the callback
in a reasonable way (see ABSCancelOperation for more info). However this comes at some
cost: it eats more CPU cycles, so when this is not needed (e.g. you know that you don't cancel
the operation or when you can cancel it from other thread), you should avoid use of this flag.

When the flag ABS_OPERATION_FLAG_USE_IDLE is not set, the message
ABS_MSG_IDLE is never used and it there might be quite a long time between two subsequent
calls of the callback, e.g. when the biometric operation has been started but user does not touch
the sensor for long time.

Note that callback function is declared with BSAPI symbol which on Windows platforms ex-
pands to __stdcall. And on other platforms to an empty string. Omitting BSAPI symbol or

BSAPI Reference Manual

87

__stdcall declaration on Windows leads to undefined behavior of the callback or even to crash
of the program.

Parameters

pOperation Pointer to ABS_OPERATION structure used when calling the inter-
active operation.

The caller of the interactive operation can use member Context of the
structure to pass data into the callback.

dwMsgID ID of message. See description of ABS_MSG_xxxx constants.

pMsgData Pointer to data with additional information related with the message.

Its meaning is message dependent. Refer to documentation of specific
ABS_MSG_xxxx constants.

BSAPI Reference Manual

88

6 Specific Constants

6.1 Flags for ABSInitializeEx (ABS_INIT_FLAG_xxxx)

The following flags can be used in function ABSInitializeEx.

ABS_INIT_FLAG_NT_SERVICE 0x1

Initializes the library in a mode compatible with Windows NT service.

This mode is supported only on MS Windows. You should use this flag only when your application is running
as NT service.

Note that this flag cannot be used together with ABS_INIT_FLAG_FORCE_REMOTE_SENSOR. When
flag ABS_INIT_FLAG_NT_SERVICE is used, only local devices can be opened, regardless whether
ABS_INIT_FLAG_FORCE_LOCAL_SENSOR flag is or is not used.

ABS_INIT_FLAG_FORCE_LOCAL_SENSOR 0x2

Forces BSAPI to ignore remote sessions and always open sensors locally.

This flag cannot be used together with ABS_INIT_FLAG_FORCE_REMOTE_SENSOR.

This mode is supported only on MS Windows.

ABS_INIT_FLAG_FORCE_REMOTE_SENSOR 0x4

Forces BSAPI to open sensors in a remote session.

I.e. if the session is not remote (via Terminal Services or Citrix), no device can be opened.

This mode cannot be used in a service, i.e. it cannot be used together with ABS_INIT_FLAG_NT_SERVICE
flag. Also it cannot be used toggether with ABS_INIT_FLAG_FORCE_LOCAL_SENSOR.

This mode is supported only on MS Windows.

BSAPI Reference Manual

89

6.2 Flags for ABS_OPERATION (ABS_OPERATION_FLAG_xxxx)

The following flags can be used in structure ABS_OPERATION.

ABS_OPERATION_FLAG_LL_CALLBACK 0x1

Enables low level callback mode.

See documentation of ABS_CALLBACK for more information how the low level callback mode differs from
the default high level mode.

ABS_OPERATION_FLAG_USE_IDLE 0x2

Enables sending of messages ABS_MSG_IDLE to operation callback.

By default idle messages are not sent. If hey are enabled, they are called in short intervals so you can call AB-
SCancelOperation effectively from the operation callback.

You should not allow sending the idle messages unless you really need them.

BSAPI Reference Manual

90

6.3 Flags for Biometric and Image Grabbing Functions (ABS_FLAG_xxxx)

The following flags can be used for biometric functions.

Note that not all functions accept all flags. See documentation of respective function for more information.

ABS_FLAG_NOTIFICATION 0x1

Enables notification mode of the biometric operation.

In the notification mode the biometric function does not provide any feedback to user until the user swipes.
This is useful for applications running on background, when it's not desired to disturb user until he swipes.

Whether the GUI dialog should be visible or not is controlled by messages ABS_MSG_DLG_SHOW and
ABS_MSG_DLG_HIDE.

Only functions ABSCapture and ABSVerify support this flag.

ABS_FLAG_AUTOREPEAT 0x2

Enables auto-repeat mode of the biometric operation.

If used, the verification is automatically restarted when the user's swipe does not match any template in a pro-
vided template set.

Only function ABSVerify supports this flag. See documentation of this function for more details.

ABS_FLAG_STRICT_PROFILE 0x4

Requires strict interpretation of raw grab profile.

When set and any of the requested profile data cannot be respected because the FM does not support it, the raw
grab operation fails and ANS_STATUS_NOT_SUPPORTED is returned.

When not set the profile is followed only to degree supported by the device. I.e. those not supported are silently
ignored, and the operation continues. Please note that profile key ABS_PKEY_IMAGE_FORMAT is always
interpreted in the strict way.

Only function ABSRawGrab supports this flag.

ABS_FLAG_HIGH_RESOLUTION 0x8

Requires to use high sample image resolution.

Some devices do not use high resolution by default because it has some huge impact on performance, and
amount of data sent from the device.

Using ABSGrab with this flag is device independent alternative to ABSRawGrab with exact device format
specified, but that requires the caller to choose the right format depending device type.

BSAPI Reference Manual

91

6.4 Template Purpose Constants (ABS_PURPOSE_xxxx)

Possible values used where purpose of fingerprint template (BIR)

Biometric functions which take purpose as one of their parameter can use this information to optimize operation
processing. For example enrollment usually requires a higher template quality, so built-in biometric tests for tem-
plate quality are stricter when ABS_PURPOSE_ENROLL is specified.

Please notice that the defined constants correspond to constants defined in BioAPI (BioAPI_PURPOSE_xxxx).
However also note that BSAPI supports uses only subset of the purposes supported defined in BioAPI.

ABS_PURPOSE_UNDEFINED 0

The purpose is not specified.

The biometric operation is not optimized for any particular BIR purpose.

ABS_PURPOSE_VERIFY 1

BIR is intended to be used for verification.

ABS_PURPOSE_ENROLL 3

BIR is intended to be used for enrollment.

BSAPI Reference Manual

92

6.5 Key Constants for ABS_PROFILE_DATA (ABS_PKEY_xxxx)

Constants ABS_PKEY_xxxx are possible values for member Key of

ABS_PKEY_WAIT_FOR_ACCEPTABLE 1

Enables or disables waiting for acceptable scan quality.

When set to non-zero, the waiting is enabled. When set to zero, it is disabled.

Note that the setting has slightly different effect on devices depending whether hey have area or strip sensor.

If the waiting is enabled then devices equiped with area sensor scan repeatedly until something resembling real
finger is scanned (or until the operation is stopped due timeout or canceled or other error occures.) If disabled
the area sensor just scans once regardless if any finger is present or not. By default, the waiting for acceptable
is enabled for area sensor devices.

If the waiting is enabled then devices with strip sensors can ask for multiple swipes, until the scanned
image meets all required quality checks (as set with ABS_PKEY_SCAN_QUALITY_QUERY and
ABS_PKEY_IMAGE_QUALITY_QUERY). If disabled, the raw grab operation requires only one finger
swipe. By default, the wait for acceptable is disabled for the strip sensor devices.

Note that when quality checks are disabled (i.e. both ABS_PKEY_SCAN_QUALITY_QUERY and
ABS_PKEY_IMAGE_QUALITY_QUERY are set to non-zero), this flag has no effect for strip sensors be-
cause any swipe is then considered as acceptable.

ABS_PKEY_SCAN_QUALITY_QUERY 2

Sets scan quality check mode.

When set to non-zero (default), scanning quality problems are ignored during the swipe and thus they are not
sent to callback. You can still retrieve some information about scan quality in form of ABS_SWIPE_INFO
structure.

When set to zero, scanning quality problems are sent to the callback in form of ABS_MSG_QUALITY_xxxx
messages.

ABS_PKEY_IMAGE_QUALITY_QUERY 3

Sets image quality check mode.

When set to non-zero (default), image quality problems are ignored during the swipe and thus they are not sent
to callback. You can still retrieve some information about scan quality in form of ABS_SWIPE_INFO struc-
ture.

When set to zero, image quality problems are sent to the callback in form of ABS_MSG_QUALITY_xxxx
messages.

ABS_PKEY_ALLOW_HW_SLEEP 4

Enables HW sleep mode.

When set to non-zero (default), HW sleep of the device is enabled during the raw grab operation. When set to
zero, the sleep is disabled.

BSAPI Reference Manual

93

ABS_PKEY_IMAGE_FORMAT 5

Specifies desired image format.

Value can be any ABS_PVAL_IFMT_xxxx constant. Note that various devices support different image for-
mats. Using unsupported image format causes ABSRawGrab to fail with ABS_STAUS_NOT_SUPPORTED,
regardless whether strict mode is used or not.

ABS_PKEY_REC_TERMINATION_POLICY 6

Specifies image reconstruction termination policy.

It can be any ABS_PVAL_RTP_xxxx constant. It determines when the FM stops to scan the finger.

Default value depends on the FM model used:

• TFM 2.0: ABS_PVAL_RTP_CORE

• ESS 2.1: ABS_PVAL_RTP_CORE

• ESS 2.2: ABS_PVAL_RTP_CORE_PLUS

• SONLY: ABS_PVAL_RTP_CORE_PLUS

• TCD50/TCD58: ABS_PVAL_RTP_FINGERTIP

ABS_PKEY_REC_RETUNING 7

Enables automatic sensor retuning.

When set to non-zero (default), an automatic sensor calibration tuning is enabled while waiting for finger in or-
der to always get the best image.

When set to zero, the calibration tuning is disabled.

ABS_PKEY_REC_DIGITAL_GAIN 8

This value is used for digital image enhancement.

The value determines a factor of digital image enhancement. It is strongly recommended not to change this pa-
rameter.

Supported only by TFM 2.0 and ESS 2.1.

ABS_PKEY_REC_FLAG_DGAIN 9

This value is used for digital image enhancement.

When set to non-zero (default), digital gain enhancement is enabled; when zero, it is disabled.

Supported only by TCD50/TCD58

ABS_PKEY_REC_FLAG_SRA_DOWN 10

Enables top-down striation removal algorithm.

BSAPI Reference Manual

94

When set to non-zero (default), the algorithm is enabled. When zero, it is disabled.

ABS_PKEY_REC_FLAG_SRA_UP 11

Enables bottom-up striation removal algorithm.

When set to non-zero (default), the algorithm is enabled. When zero, it is disabled.

ABS_PKEY_REC_FLAG_SKEW 12

Enables skew compensation algorithm.

When set to non-zero, the algorithm is enabled. When zero, it is disabled.

Supported only by TCD50/TCD58.

ABS_PKEY_REC_FLAG_GRADIENT 13

Enables gradient compensation algorithm.

When set to non-zero, the algorithm is enabled. When zero, it is disabled.

Supported only by TCD50/TCD58.

ABS_PKEY_REC_SWIPE_DIRECTION 14

Specifies swipe direction mode.

Can be set to any ABS_PVAL_SWIPEDIR_xxxx constant. The default value is
ABS_PVAL_SWIPEDIR_STANDARD. If you set it to any non-default value you should set
ABS_PKEY_SCAN_QUALITY_QUERY to zero as well.

Not supported by TFM 2.0 and ESS 2.1.

ABS_PKEY_REC_NOISE_ROBUSTNESS 15

Specifies noise robustness mode.

Can be set to any ABS_PVAL_NOIR_xxxx constant. Default is ABS_PVAL_NOIR_DISABLED for SONLY
and ABS_PVAL_NOIR_ON_DETECTION for TCD50/TCD58.

Supported only by SONLY and TCD50/TCD58.

ABS_PKEY_REC_NOISE_ROBUSTNESS_TRIGGER 16

Specifies noise robustness trigger.

It determines how many consecutive bad swipes triggers noise robustness. Zero means no triggering by bad
swipes. Default value is 3.

Supported by TCD50/TCD58 only.

ABS_PKEY_REC_SWIPE_TIMEOUT 17

Timeout for swipe termination in milliseconds.

If this timeout expires, image reconstruction is terminated. Still the image reconstructed so far is passed to next
processing which decides about its quality.

BSAPI Reference Manual

95

Default timeout is 6000 ms.

Not supported by TFM 2.0 and ESS 2.1.

ABS_PKEY_REC_NO_MOVEMENT_TIMEOUT 18

No movement timeout.

If no movement is detected for that period (in milliseconds), the swipe is terminated regardless on the finger
presence. This feature is disabled if set to zero.

Default is 500 ms.

Not supported by TFM 2.0 and ESS 2.1.

ABS_PKEY_REC_NO_MOVEMENT_RESET_TIMEOUT 19

No movement reset timeout.

If no movement is detected for that period (in milliseconds) and image is very short, the reconstruction is not
restarted any more. This feature is disabled if set to zero.

Default is 2000 ms.

Not supported by TFM 2.0 and ESS 2.1.

ABS_PKEY_SENSOR_SECURITY_MODE 20

Sensor security mode.

Some sensors support HW encryption of image data being scanned. This parameter specifies if this encryption
is used.

It can be set to any ABS_PVAL_SSM_xxxx constant.

The default value depends on device used, and on setting of global parameter
ABS_PARAM_SENSOR_SECURITY.

Supported only by SONLY and TCD50/TCD58.

ABS_PKEY_DETECT_LATENT 21

Anti-latent checking mode.

This parameter sets whether anti-latent checking is performed during the grab operation. When set to zero, only
fast anti-latent check is performed, when set to 1, full (and slower) anti-latent check is performed. Default val-
ue is device dependent.

If the scanned image is evaluated as being a latent image of a finger scanned previously, then the callback
function gets message ABS_MSG_QUALITY_TOO_LIGHT.

This settings has an effect only for area sensors. Strip sensors ignore it.

ABS_PKEY_READER_SECURITY_MODE 22

BSAPI Reference Manual

96

Reader security mode.

Some devices support encryption of data afrer reading data from sensor and reading from non-volatile device
memory, so only strongly encrypted data are then sent between the fingerprint device and computer.

It can be set to any ABS_PVAL_RSM_xxxx constant.

The default value depends on device used, and on setting of global parameter
ABS_PARAM_SENSOR_SECURITY.

Supported only by SONLY and TCD50/TCD58.

ABS_PKEY_REC_FLAG_DISABLE_FFE_381 23

Disable Faint Finger Enhancement for 381 DPI operations.

When set to 1 then Faint Finger Enhancment is disabled for operations using 381 DPI image resolution

The default value depends on device used.

This settings has an effect only for area sensors. Strip sensors ignore it.

Supported only by SONLY (area sensors), TCD50/TCD58 and TCD51/TCD59.

ABS_PKEY_REC_FLAG_DISABLE_FFE_508 24

Disable Faint Finger Enhancement for 508 DPI operations.

When set to 1 then Faint Finger Enhancment is disabled for operations using 508 DPI image resolution

The default value depends on device used.

This settings has an effect only for area sensors. Strip sensors ignore it.

Supported only by SONLY (area sensors), TCD50/TCD58 and TCD51/TCD59.

BSAPI Reference Manual

97

6.6 ABS_PKEY_IMAGE_FORMAT Values (ABS_PVAL_IFMT_xxxx)

Possible image formats.

Please note that the desired image format is always evaluated in a strict mode of raw grab profile.

Note that the symbolic constant names contain some marginal parameters of the desired format: horizontal and
vertical resolution in dots per inch (DPI), bits per pixel (they determine color count of the resulted sample image).

Remember that the structure ABS_IMAGE always uses one byte per pixel, regardless of the desired image format.
(The image uses more compact representation during communication between the FM device and computer.)

Some image format contain word BINARIZED in the symbolic constant name. In this case the image is binarized
yet on the device (with the exception of SONLY), so that the communication is faster.

Note that support for the particular image format depends on exact firmware version and whether the device was
calibrated for the image format. Especially low power modes may require calibration. Therefore the information
in the table below what FM models support which format is only for basic orientation.

ABS_PVAL_IFMT_381_381_8 2

Finger is grabbed with 3:4 subsampling (every 4 pixels scaled down to 3 pixels), 381 x 381 DPI, 8 bits/pixel.

Supported by TFM, ESS, SONLY, TCD50/TCD58, TCD51/TCD59.

ABS_PVAL_IFMT_254_254_8 3

Finger is grabbed with 1:2 subsampling (every second pixel), 254 x 254 DPI, 8 bits/pixel.

Supported by TFM, ESS.

ABS_PVAL_IFMT_381_381_8_BINARIZED 4

Finger is grabbed 3:4 subsampling (every 4 pixels scaled down to 3 pixels), 381 x 381 DPI, 8 bits/pixel and bi-
narized to 1 bit/pixel.

Supported by TFM, ESS, SONLY, TCD50/TCD58, TCD51/TCD59.

ABS_PVAL_IFMT_508_254_8 5

Grab the whole finger with 1:2 subsampling in Y axis (508 x 254 DPI), 8 bits per pixel.

Supported by ESS, TCD50/TCD58 (TCS4C) (some firmware variants only).

ABS_PVAL_IFMT_508_508_4 6

Grab the whole finger in full resolution (508 DPI, 8 bits), and cut off to 4 bits per pixel.

Supported by ESS, TCD50/TCD58 (TCS4C).

ABS_PVAL_IFMT_381_381_4 7

Grab the whole finger with 3:4 subsampling (381 x 381 DPI, 8 bits), and cut off to 4 bits per pixel.

Supported by ESS, TCD50/TCD58 (TCS4C, TCS4K, TCS5B), TCD51/TCD59.

ABS_PVAL_IFMT_508_254_4 8

Grab the whole finger with 1:2 subsampling in Y axis (508 x 254 DPI, 8 bits), and cut off to 4 bits per pixel.

Supported by ESS, TCD50/TCD58 (TCS4C) (some firmware variants only).

BSAPI Reference Manual

98

ABS_PVAL_IFMT_254_254_4 9

Grab the whole finger with 1:2 subsampling (254 x 254 DPI, 8 bits), and cut off to 4 bits per pixel.

Supported by ESS.

ABS_PVAL_IFMT_508_508_8_WIDTH208 10

Grabs a centered windows of size 208 x 288 pixels, in full resolution of 508 x 508 DPI and 8 bits/pixel.

Supported by TFM, ESS 2.2.

ABS_PVAL_IFMT_508_508_8_COMPRESS1 11

Grab the whole finger in full resolution (508 DPI), 8 bits per pixel. As ESS currently does not have enough
RAM to hold the image of the whole fingerprint, the image is on-the-fly compressed using a lossy algorithm
and transferred to the host in this format. The BSAPI.DLL library takes care of uncompressing the image. It
is strongly recommended to use ABS_PVAL_IFMT_508_508_8_COMPRESS2 format in ESS2.2 instead of
COMPRESS1.

Supported by ESS.

ABS_PVAL_IFMT_508_508_4_SCAN4 12

Grab the whole finger in full resolution (508 DPI) in 4-bit scanning mode. This mode has lower power con-
sumption but also lower image quality.

Supported by ESS 2.1 older then rev.K.

ABS_PVAL_IFMT_381_381_8_FAST 13

Grab the whole finger with 3:4 subsampling (381 x 381 DPI), 8 bits/pixel. This mode internally uses the 508 x
254 scanning, which supports faster finger movements at the cost of lower image quality.

Supported by ESS, TCD50/TCD58 (TCS4C)(some firmware variants only).

ABS_PVAL_IFMT_508_254_4_SCAN4 14

Grab the whole finger with 1:2 subsampling in Y axis (508 x 254 DPI) in 4-bit scanning mode. This mode has
lower power consumption but also lower image quality.

Supported by ESS 2.1 older then rev.K.

ABS_PVAL_IFMT_254_254_4_SCAN4 15

Grab the whole finger with 1:2 subsampling (254 x 254 DPI) in 4-bit scanning mode. This mode has lower
power consumption but also lower image quality.

Supported by ESS 2.1 older then rev.K.

ABS_PVAL_IFMT_381_381_4_FAST 16

Grab the whole finger with 3:4 subsampling (381 x 381 DPI, 8 bits), and cut off to 4 bits/pixel. This mode in-
ternally uses the 508 x 254 scanning, which supports faster finger movements at the cost of lower image quali-
ty.

Supported by ESS, TCD50/TCD58 (TCS4C) (some firmware variants only).

ABS_PVAL_IFMT_381_381_8_BINARIZED_FAST 17

BSAPI Reference Manual

99

Grab the whole finger with 3:4 subsampling (381 x 381 DPI, 8 bits), and binarize to 1 bit/pixel. This mode in-
ternally uses the 508 x 254 scanning, which supports faster finger movements at the cost of lower image quali-
ty.

Supported by ESS, TCD50/TCD58 (TCS4C) (some firmware variants only).

ABS_PVAL_IFMT_508_508_8_COMPRESS2 18

Grab the whole finger in full resolution (508 DPI), 8 bits per pixel. As ESS currently does not have enough
RAM to hold the image of the whole fingerprint, the image is on-the-fly compressed using a lossy al-
gorithm and transferred to the host in this format. The BSAPI.DLL library takes care of uncompress-
ing the image. This format better manages image background color and digital gain information than
ABS_PVAL_IFMT_508_508_8_COMPRESS1 format.

Supported by ESS 2.2.

ABS_PVAL_IFMT_381_381_8_SCAN381 19

Grab the whole finger with 3:4 subsampling (every 4 pixels scaled down to 3 pixels, 381 x 381 DPI), 8 bits/
pixel. Subsampling is done directly by the sensor using its native 381 scanning format.

Supported by ESS 2.2 with TCS3C, SONLY, TCD50/TCD58, TCD51/TCD59.

ABS_PVAL_IFMT_381_381_4_SCAN381 20

Grab the whole finger with 3:4 subsampling (381 x 381 DPI, 8 bits), and cut off to 4 bits per pixel. Subsam-
pling is done directly by the sensor using its native 381 scanning format.

Supported by ESS 2.2 with TCS3C, TCD50/TCD58 (TCS4C, TCS4K, TCS5B), TCD51/TCD59.

ABS_PVAL_IFMT_381_381_8_BINARIZED_SCAN381 21

Grab the whole finger with 3:4 subsampling (every 4 pixels scaled down to 3 pixels, 381 x 381 DPI), 8 bits/
pixel, and binarize to 1 bit/pixel. Subsampling is done directly by the sensor using its native 381 scanning for-
mat.

Supported by ESS 2.2 with TCS3C, SONLY, TCD50/TCD58 (TCS4C, TCS4K, TCS5B), TCD51/TCD59.

ABS_PVAL_IFMT_381_381_8_LP 22

Grab the whole finger with 3:4 subsampling (every 4 pixels scaled down to 3 pixels, 381 x 381 DPI), 8 bits/
pixel, uses low power consumption mode.

Supported by ESS 2.2, TCD50/TCD58 (TCS4C) (only some special non-standard firmware variants).

ABS_PVAL_IFMT_381_381_4_LP 23

Grab the whole finger with 3:4 subsampling (381 x 381 DPI, 8 bits), and cut off to 4 bits per pixel, uses low
power consumption mode.

Supported by ESS 2.2, TCD50/TCD58 (TCS4C) (only some special non-standard firmware variants).

ABS_PVAL_IFMT_381_381_8_BINARIZED_LP 24

Grab the whole finger with 3:4 subsampling (every 4 pixels scaled down to 3 pixels, 381 x 381 DPI), 8 bits/
pixel, and binarize to 1 bit/pixel, uses low power consumption mode.

Supported by ESS 2.2, TCD50/TCD58 (TCS4C) (only some special non-standard firmware variants).

ABS_PVAL_IFMT_381_381_8_VLP 25

BSAPI Reference Manual

100

Grab the whole finger with 3:4 subsampling (every 4 pixels scaled down to 3 pixels, 381 x 381 DPI), 8 bits/
pixel, uses very low power consumption mode.

Supported by ESS 2.2 with serial communication not faster then 57600 kbps.

ABS_PVAL_IFMT_381_381_4_VLP 26

Grab the whole finger with 3:4 subsampling (381 x 381 DPI, 8 bits), and cut off to 4 bits per pixel, uses very
low power consumption mode.

Supported by ESS 2.2 with serial communication not faster then 57600 kbps.

ABS_PVAL_IFMT_381_381_8_BINARIZED_VLP 27

Grab the whole finger with 3:4 subsampling (every 4 pixels scaled down to 3 pixels, 381 x 381 DPI), 8 bits/
pixel, and binarize to 1 bit/pixel, uses very low power consumption mode.

Supported by ESS 2.2 with serial connection not faster then 57600 kbps.

ABS_PVAL_IFMT_381_381_8_SCAN381_381_4 28

Grab the whole finger with 3:4 subsampling (every 4 pixels scaled down to 3 pixels, 381 x 381 DPI), 8 bits/
pixel. Image is internally scanned using format 381/381/4.

Supported only by some variants of SONLY.

ABS_PVAL_IFMT_381_381_8_BINARIZED_SCAN381_381_4 30

Grab the whole finger with 3:4 subsampling (every 4 pixels scaled down to 3 pixels, 381 x 381 DPI), 8 bits/
pixel. Image is internally scanned using format 381/381/4.

Supported only by some variants of SONLY.

ABS_PVAL_IFMT_381_381_8_SCAN381_254_4 31

Grab the whole finger with 3:4 subsampling (every 4 pixels scaled down to 3 pixels, 381 x 381 DPI), 8 bits/
pixel. Image is internally scanned using format 381/254/4.

Supported only by some variants of SONLY.

ABS_PVAL_IFMT_381_381_8_BINARIZED_SCAN381_254_4 33

Grab the whole finger with 3:4 subsampling (every 4 pixels scaled down to 3 pixels, 381 x 381 DPI), 8 bits/
pixel, and binarize to 1 bit/pixel. Image is internally scanned using format 381/254/4.

Supported only by some variants of SONLY.

ABS_PVAL_IFMT_508_508_8_SCAN508_508_8 34

Grab the whole finger in full resolution (508 x 508 DPI), 8 bits/pixel. Image is internally scanned using format
508/508/8.

Supported only by some variants of SONLY, TCD50/TCD58 (TCS1, TCS2).

ABS_PVAL_IFMT_508_508_4_SCAN508_508_8 35

Grab the whole finger in full resolution (508 x 508 DPI), 8 bits/pixel, and cut off to 4 bits per pixel. Image is
internally scanned using format 508/508/8.

Supported only by some variants of SONLY, TCD50/TCD58 (TCS4C).

BSAPI Reference Manual

101

ABS_PVAL_IFMT_508_508_8_BINARIZED_SCAN508_508_8 36

Grab the whole finger in full resolution (508 x 508 DPI), 8 bits/pixel, and binarize to 1 bit/pixel. Image is inter-
nally scanned using format 508/508/8.

Supported by some variants of SONLY.

ABS_PVAL_IFMT_508_508_8_COMPRESS3 39

Grab the whole finger in full resolution (508 x 508 DPI), 8 bits/pixel. As TCD50/TCD58 currently does not
have enough RAM to hold the image of the whole fingerprint, the image is on-the-fly compressed using a lossy
algorithm and transferred to the host in this format. The BSAPI.DLL library takes care of uncompressing the
image.

Supported by TCD50/TCD58 (TCS4C, TCS4K, TCS5B), TCD51/TCD59.

ABS_PVAL_IFMT_508_254_8_LP 40

Grab the whole finger with 1:2 subsampling in Y axis (508 x 254 DPI), 8 bits per pixel, uses low power con-
sumption mode.

Supported by TCD50/TCD58 (TCS4C) (some firmware variants only).

ABS_PVAL_IFMT_508_254_4_LP 41

Grab the whole finger with 1:2 subsampling in Y axis (508 x 254 DPI), 4 bits per pixel, uses low power con-
sumption mode.

Supported by TCD50/TCD58 (TCS4C) (some firmware variants only).

ABS_PVAL_IFMT_381_381_8_FAST_LP 42

Grab the whole finger with 3:4 subsampling (381 x 381 DPI), 8 bits/pixel, uses low power consumption mode
with support for scanning of faster finger movements.

Supported by TCD50/TCD58 (TCS4C) (some firmware variants only).

ABS_PVAL_IFMT_381_381_4_FAST_LP 43

Grab the whole finger with 3:4 subsampling (381 x 381 DPI), 4 bits/pixel, uses low power consumption mode
with support for scanning of faster finger movements.

Supported by TCD50/TCD58 (TCS4C) (some firmware variants only).

ABS_PVAL_IFMT_381_381_8_BINARIZED_FAST_LP 44

Grab the whole finger with 3:4 subsampling (381 x 381 DPI), 8 bits/pixel, and binarize to 1 bit/pixel, uses low
power consumption mode with support for scanning of faster finger movements.

Supported by TCD50/TCD58 (TCS4C) (some firmware variants only).

BSAPI Reference Manual

102

6.7 ABS_PKEY_REC_TERMINATION_POLICY Values (ABS_PVAL_RTP_xxxx)

See description of ABS_PKEY_REC_TERMINATION_POLICY for more information.

ABS_PVAL_RTP_BASIC 0

Basic image reconstruction termination policy.

If the scanned image would be longer then maximal allowed length, only beginning of the image from the start
on is returned.

ABS_PVAL_RTP_FINGERTIP 1

Fingertip image reconstruction termination policy.

If the scanned image would be longer then maximal allowed length, the end of the image up to the fingertip is
returned.

ABS_PVAL_RTP_CORE 2

Core image reconstruction termination policy.

If the scanned image would be longer then maximal allowed length, the most valuable part of the image from
biometrical viewpoint (typically the fingerprint’s core) is returned.

ABS_PVAL_RTP_CORE_PLUS 3

Enhanced core image reconstruction termination policy.

If the scanned image would be longer then maximal allowed length, the most valuable part of the image from
biometrical viewpoint (typically the fingerprint’s core), with finger joint skipped, is returned.

Not supported by TFM 2.0 and ESS 2.1 .

BSAPI Reference Manual

103

6.8 ABS_PKEY_REC_SWIPE_DIRECTION Values (ABS_PVAL_SWIPEDIR_xxxx)

See description of ABS_PKEY_REC_SWIPE_DIRECTION for more information.

ABS_PVAL_SWIPEDIR_STANDARD 0

Standard swipe direction.

ABS_PVAL_SWIPEDIR_INVERTED 1

Inverted swipe direction.

ABS_PVAL_SWIPEDIR_AUTODETECT 2

Autodetection at the beginning of the swipe.

ABS_PVAL_SWIPEDIR_STANDARD_WARN 3

Standard swipe direction with warning.

If backward swipe is detected, message ABS_MSG_QUALITY_BACKWARD is sent to callback. Note that
ABS_PKEY_SCAN_QUALITY_QUERY must be set to 0 if this should work reliably.

ABS_PVAL_SWIPEDIR_INVERTED_WARN 4

Inverted swipe direction with warning.

If backward swipe is detected, message ABS_MSG_QUALITY_BACKWARD is sent to callback. Note that
ABS_PKEY_SCAN_QUALITY_QUERY must be set to 0 if this should work reliably.

BSAPI Reference Manual

104

6.9 ABS_PKEY_REC_NOISE_ROBUSTNESS Values (ABS_PVAL_NOIR_xxxx)

See description of ABS_PKEY_REC_NOISE_ROBUSTNESS for more information.

ABS_PKEY_NOIR_DISABLED 0

Noise robustness is switched off.

ABS_PKEY_NOIR_FORCED 1

Noise robustness is switched on.

ABS_PKEY_NOIR_ON_DETECTION 2

Noise robustness is in auto detection mode.

BSAPI Reference Manual

105

6.10 ABS_PKEY_SENSOR_SECURITY_MODE values (ABS_PVAL_SSM_xxxx)

See description of ABS_PKEY_SENSOR_SECURITY_MODE for more information.

ABS_PVAL_SSM_DISABLED 0

Sensor security mode is disabled.

ABS_PVAL_SSM_ENCRYPT 1

Sensor security is set to 'encryption' mode.

ABS_PVAL_SSM_SIGN_ALL 2

Sensor security is set to 'sign all' mode.

ABS_PVAL_SSM_SIGN_PARTIAL_V1 3

Sensor security is set to 'sign partial ver. 1'.

It is faster then version 2, but less secure.

ABS_PVAL_SSM_SIGN_PARTIAL_V2 4

Sensor security is set to 'sign partial ver. 2'.

It is slower then version 1, but more secure.

BSAPI Reference Manual

106

6.11 ABS_PKEY_READER_SECURITY_MODE values (ABS_PVAL_RSM_xxxx)

See description of ABS_PKEY_SENSOR_SECURITY_MODE for more information.

ABS_PVAL_RSM_DISABLED 0

Reader security mode is disabled.

ABS_PVAL_RSM_ENCRYPT 1

Reader security is set to 'encryption' mode.

BSAPI Reference Manual

107

6.12 Swipe Info Flags (ABS_SWIPE_FLAG_xxxx)

Member Flags of structure ABS_SWIPE_INFO is a bitmask describing

ABS_SWIPE_FLAG_TOO_FAST 0x01

The swipe was too fast.

If user swipes too fast, the device is not able to process all the data.

ABS_SWIPE_FLAG_TOO_SKEWED 0x02

The swipe was too skewed.

ABS_SWIPE_FLAG_BACKWARDS_MOVEMENT 0x04

Swipe was in wrong direction.

Note that this flag is set only in autodetection mode of the swipe direction (i.e. when profile value
ABS_PKEY_REC_SWIPE_DIRECTION is set to ABS_PVAL_SWIPEDIR_AUTODETECT).

ABS_SWIPE_FLAG_JOINT_DETECTED 0x08

Finger joint was detected in the swipe.

ABS_SWIPE_FLAG_TOO_SHORT 0x10

The swipe was too short.

It may cause low level quality of resulting biometric templates, because there only few biometric data in the
swiped region of user's finger.

ABS_SWIPE_FLAG_TOO_LIGHT 0x20

The swipe was too light.

In case of area sensor this can also happen in a case of grabbed latentt grab.

BSAPI Reference Manual

108

6.13 Anti-latent Checking Flags (ABS_LATENT_xxxx)

Flags usable with functions ABSCheckLatent.

See documentation of function ABSCheckLatent and also chapter Anti-latent Checking for more information.

ABS_LATENT_OP_CHECK 0x01

Asks function ABSCheckLatent to perform anti-latent check.

ABS_LATENT_OP_STORE 0x02

Asks function ABSCheckLatent to store the last scan for any subsequent checks.

BSAPI Reference Manual

109

6.14 Finger Detect Flags (ABS_DETECT_PURPOSE_xxxx)

Flags of dwDetectPurpose argument of ABSDetectFinger call

ABS_DETECT_PURPOSE_TOUCH 0x00

Detection of simple finger touch.

ABS_DETECT_PURPOSE_LIFT 0x02

Detection of finger lift.

ABS_DETECT_PURPOSE_QUALITY_TOUCH 0x04

Detection of finger touch with acceptable image quality.

Note that this flag is supported only for area sensors.

ABS_DETECT_PURPOSE_LONG_TOUCH 0x06

Detection of long finger touch.

Note that this flag is supported only for SONLY sensors.

BSAPI Reference Manual

110

6.15 Process Constants (ABS_PROCESS_xxxx)

These constants identify interactive operation processes.

Structures ABS_PROCESS_DATA, ABS_PROCESS_BEGIN_DATA and ABS_PROCESS_SUCCESS_DATA
have member called Process which identifies the stage the operation enters.

Some high level biometric operations consist of multiple processes. Generally the interactive operation is com-
posed from tree of processes. Entering and leaving in node in the tree is marked with calling the callback with
messages ABS_MSG_PROCESS_BEGIN and ABS_MSG_PROCESS_END.

Other ABS_MSG_PROCESS_xxxx may or may not be sent, depending on the respective process and its progress.

For example a typical consolidated enrollment operation can be composed from the sequence of the following
messages:

1. ABS_MSG_PROCESS_BEGIN (ProcessID = ABS_PROCESS_ENROLL)

2. ABS_MSG_PROCESS_BEGIN (ProcessID = ABS_PROCESS_CONSOLIDATED_CAPTURE)

3. ABS_MSG_PROCESS_BEGIN (ProcessID = ABS_PROCESS_CAPTURE)

4. ABS_MSG_PROCESS_BEGIN (ProcessID = ABS_PROCESS_GRAB)

5. ... messages leading the user to correctly swipe his finger

6. ABS_MSG_PROCESS_END (end of ABS_PROCESS_GRAB)

7. ABS_MSG_PROCESS_PROGRESS (Percentage=23%)

8. ABS_MSG_PROCESS_END (end of ABS_PROCESS_CAPTURE)

9. ABS_MSG_PROCESS_BEGIN (ProcessID = ABS_PROCESS_CAPTURE)

10. ABS_MSG_PROCESS_BEGIN (ProcessID = ABS_PROCESS_GRAB)

11. ... messages leading the user to correctly swipe his finger

12. ABS_MSG_PROCESS_END (end of ABS_PROCESS_GRAB)

13. ABS_MSG_PROCESS_PROGRESS (Percentage=32%)

14. ABS_MSG_PROCESS_END (end of ABS_PROCESS_CAPTURE)

15. ABS_MSG_PROCESS_BEGIN (ProcessID = ABS_PROCESS_CAPTURE)

16. ABS_MSG_PROCESS_BEGIN (ProcessID = ABS_PROCESS_GRAB)

17. ... messages leading the user to correctly swipe his finger

18. ABS_MSG_PROCESS_END (end of ABS_PROCESS_GRAB)

19. ABS_MSG_PROCESS_PROGRESS (Percentage=39%)

20. ABS_MSG_PROCESS_END (end of ABS_PROCESS_CAPTURE)

21. ABS_MSG_PROCESS_BEGIN (ProcessID = ABS_PROCESS_CAPTURE)

BSAPI Reference Manual

111

22. ABS_MSG_PROCESS_BEGIN (ProcessID = ABS_PROCESS_GRAB)

23. ... messages leading the user to correctly swipe his finger

24. ABS_MSG_PROCESS_END (end of ABS_PROCESS_GRAB)

25. ABS_MSG_PROCESS_PROGRESS (Percentage=64%)

26. ABS_MSG_PROCESS_END (end of ABS_PROCESS_CAPTURE)

27. ABS_MSG_PROCESS_BEGIN (ProcessID = ABS_PROCESS_CAPTURE)

28. ABS_MSG_PROCESS_BEGIN (ProcessID = ABS_PROCESS_GRAB)

29. ... messages leading the user to correctly swipe his finger

30. ABS_MSG_PROCESS_END (end of ABS_PROCESS_GRAB)

31. ABS_MSG_PROCESS_PROGRESS (Percentage=88%)

32. ABS_MSG_PROCESS_END (end of ABS_PROCESS_CAPTURE)

33. ABS_MSG_PROCESS_BEGIN (ProcessID = ABS_PROCESS_CAPTURE)

34. ABS_MSG_PROCESS_BEGIN (ProcessID = ABS_PROCESS_GRAB)

35. ... messages leading the user to correctly swipe his finger

36. ABS_MSG_PROCESS_END (end of ABS_PROCESS_GRAB)

37. ABS_MSG_PROCESS_PROGRESS (Percentage=100%)

38. ABS_MSG_PROCESS_END (end of ABS_PROCESS_CAPTURE)

39. ABS_MSG_PROCESS_END (end of ABS_PROCESS_CONSOLIDATED_CAPTURE)

40. ABS_MSG_PROCESS_END (end of ABS_PROCESS_ENROLL)

ABS_PROCESS_NAVIGATE 1

Root process of navigation (ABSNavigate).

It typically consists of one subprocess of type ABS_PROCESS_CONSOLIDATED_CAPTURE.

ABS_PROCESS_ENROLL 2

Root process of enrollment (ABSEnroll).

It is typically composed of one subprocess ABS_PROCESS_CONSOLIDATED_CAPTURE.

ABS_PROCESS_VERIFY 3

Root process of verification (ABSVerify)

It has typically one subprocess of type ABS_PROCESS_CAPTURE.

ABS_PROCESS_IDENTIFY 4

Root process of identification.

ABS_PROCESS_CONSOLIDATED_CAPTURE 5

BSAPI Reference Manual

112

Process of consolidated template from the scanner.

It is a complex process, consisted of several subprocesses of ABS_PROCESS_CAPTURE and one final
ABS_PROCESS_CONSOLIDATE.

ABS_PROCESS_CONSOLIDATE 6

Process of consolidation.

It merges several templates of one finger into one high-quality enrollment template.

Note that since BSAPI 3.5 this process is never used and the constant remains to be defined solely for back-
ward compatibility, as source code of custom ABS_CALLBACK implementations could refer the constatnt.

ABS_PROCESS_CAPTURE 7

Process of template capture from scanner.

Typically it has one subprocess of type ABS_PROCESS_GRAB.

ABS_PROCESS_MATCH 8

Process of matching template against set of templates.

ABS_PROCESS_GRAB 9

Process of sample image grab from scanner.

It's relatively low level process retrieving a fingerprint sample image from the sensor.

ABS_PROCESS_NOTIFY 10

Process of notification.

This process is used by functions which allow notification mode (see ABS_FLAG_NOTIFICATION).

ABS_PROCESS_DETECT_FINGER 11

Process of finger detection.

This process is used by ABSFingerDetect() function.

BSAPI Reference Manual

113

6.16 Device Property Constants (ABS_DEVPROP_xxxx)

The following constants are suitable as values for dwPropertyId parameter

The values are read-only. They typically describe some physical attribute of the HW device, or some value stored
by production tool in the device memory.

ABS_DEVPROP_DEVICE_VERSION 0

Identifies version of the FM device ROM.

Output ABS_DATA contains 4 bytes, interpreted as ABS_DWORD. Highest byte specifies major version, sec-
ond highest byte specifies minor version and low word specifies subversions/revisions.

• 0x0200xxxx (2.0.x) - used by TFM 2.0

• 0x0401xxxx (4.1.x) - used by ESS 2.1

• 0x0402xxxx (4.2.x) - used by ESS 2.2

• 0x0500xxxx (5.0.x) - used by TCD50/TCD58

• 0x0501xxxx (5.1.x) - used by TCD51/TCD59

Note that SONLY (sensor only device without ROM) can return any number, denoting a version of the li-
brary built-in in BSAPI which emulates the device ROM. To distinguish chipset and SONLY devices, use bit
0x80000000 of ABS_DEVPROP_FUNCTIONALITY.

See also parameter ABS_DEVPROP_SENSOR_TYPE.

ABS_DEVPROP_DEVICE_ID 1

Unique identification of the device if the FM supports it.

ABS_DATA can contain arbitrary sequence of bytes, composing the identification. If not supported by FM, no
output ABS_DATA are allocated and NULL is passed out.

ABS_DEVPROP_FIRMWARE_VARIANT 2

Identifies firmware variant.

Output ABS_DATA contains 4 bytes, interpreted as ABS_DWORD.

ABS_DEVPROP_SENSOR_TYPE 4

Identifies sensor type.

Output ABS_DATA contains 4 bytes, interpreted as ABS_DWORD.

The lowest byte specifies type of the sensor used in the fingerprint device.

• 0x26 - area sensor TCS1C

• 0x1B - area sensor TCS2C

BSAPI Reference Manual

114

• 0x10 - swipe sensor TCS3B

• 0x20 - swipe sensor TCS3C

• 0x32 - swipe sensor TCS4B

• 0x33 - swipe sensor TCS4C

• 0x36 - swipe sensor TCS4E

• 0x43 - swipe sensor TCS5B

• 0x45 - swipe sensor TCS4K

• 0x4b - swipe sensor TCS5D

Other bits can be used to determine additional parameters, see also
ABS_DEVPROP_SENSOR_TYPE_FLAG_xxxx constants.

ABS_DEVPROP_SYSTEM_ID 6

System identification bits.

The value is set in firmware of the device and can be used to identify some devices with some specific purpose.
Most devices have this value set to zero.

If supported (ESS 2.2 and newer), output ABS_DATA contains 4 bytes, interpreted as ABS_DWORD. If not
supported no output ABS_DATA are allocated and NULL is passed out.

ABS_DEVPROP_SYSTEM_NAME 7

System identification name.

The value is set in firmware of the device and can be used to identify some devices with some specific purpose.

If supported (ESS 2.2 and newer) and set, output ABS_DATA contains arbitrary count of bytes, interpreted as
a null-terminated string. If not supported no output ABS_DATA are allocated and NULL is passed out.

ABS_DEVPROP_FUNCTIONALITY 8

Provides information about FM capabilities.

Output ABS_DATA contains 4 bytes, interpreted as bitmask.

Bit 0x80000000 specifies whether the FM is SONLY (bit is set) or chipset-based FM (bit is unset).

ABS_DEVPROP_DSN_STRING 11

Provides DSN of the device.

Output ABS_DATA contains any number of bytes, last of them is always zero. Interpret them as zero-terminat-
ed C string. It can be used as DSN string for functions ABSOpen and ABSEnumerateDevices.

ABS_DEVPROP_GUID 12

BSAPI Reference Manual

115

Gets GUID of the device.

Output ABS_DATA contains a binary GUID stored on the device. The GUID is generated on first device boot
or during loading firmware into NVM (depending on device type).

Note that only ESS 2.2 and newer devices support this feature.

ABS_DEVPROP_USAGE 13

Type of the reader in which the FM is used.

Output ABS_DATA contains 4 bytes, interpreted as bitmask.

• 0x80000000: If this bit is set, the sensor is internal.

• 0x40000000: If this bit is set, the sensor is external.

• 0x000000ff: The lowest byte specifies a constant which determines how device LEDs blink when
the device is in automatic blinking mode (i.e. how the device blinks when the current LED mode is
ABS_LED_MODE_AUTO).

• 0x0000ff00: The second lowest byte specifies the visual appearane of the sensor.

ABS_DEVPROP_NVM_TYPE 14

Type of NVM (Non-volatile memory) attached to the device.

Output ABS_DATA contains 4 bytes, interpreted as ABS_DWORD:

• 0: No NVM.

• 1: Normal physical NVM attached to device.

• 2: Emulated NVM: The device has no NVM. The NVM is emulated by storing data on the computer (en-
crypted Registry or NVM file). The emulated NVM is reliable for internal devices (which are always con-
nected to the same port). For external devices the emulated NVM may be re-initialized and its previous
contents lost in case that the device is removed and a different device of the same type is plugged into the
same port. The emulated NVM is also usually implemented per-port, which means that the same device
will have a different NVM if plugged into a different port.

• Other values may be defined in a future.

The NVM contains some of the device attributes and data, e.g. the data returned as
ABS_DEVPROP_DEVICE_ID, ABS_DEVPROP_SYSTEM_ID, ABS_DEVPROP_SYSTEM_NAME,
ABS_DEVPROP_GUID, ABS_DEVPROP_USAGE, as well as data stored and retrieved by calls to ABSSe-
tAppData/ABSGetAppData. If your program relies on these data, you should verify the type of NVM the de-
vice has and address the specific behavior of the emulated NVM.

ABS_DEVPROP_SENSOR_VARIANT 15

Sensor variant information.

BSAPI Reference Manual

116

Output ABS_DATA contains 4 bytes, interpreted as ABS_DWORD:

• 0: Polyimide protective coating.

• 1: SteelCoat protective coating.

Note that only TCD50/TCD58, TCD51/TCD59 and SONLY devices support this feature.

BSAPI Reference Manual

117

6.17 Device Property Sensor Type Flag Constants
(ABS_DEVPROP_SENSOR_TYPE_FLAG_xxxx)

The following constants are bit flags for ABS_DEVPROP_SENSOR_TYPE value get from

These constants represent flags included in higher parts of ABS_DEVPROP_SENSOR_TYPE device property.
It can be used to extract additional information about sensor. They typically describe some physical attribute
of the HW device or some value stored by production tool in the device memory. To read these flags get
ABS_DEVPROP_SENSOR_TYPE property value and use AND operation with flag. I.e. bool bFIPS201 = sen-
sorTypeValue & ABS_DEVPROP_SENSOR_TYPE_FLAG_FIPS201; (C/C++ example)

ABS_DEVPROP_SENSOR_TYPE_FLAG_STRIP 0x80000000

Identifies the type of sensor.

Specifies whether the sensor is swipe (also known as strip) sensor. When set the sensor is strip sensor, when
not set the sensor is area sensor.

ABS_DEVPROP_SENSOR_TYPE_FLAG_FIPS201 0x00080000

FIPS-201 certification.

Specifies whether the sensor is FIPS-201 certified. When set the sensor is certified, when not set the sensor is
not certified as FIPS-201.

BSAPI Reference Manual

118

6.18 LED Blinking Mode Constants (ABS_LED_MODE_xxxx)

For more information about each mode, se the chapter Blinking with LEDs

ABS_LED_MODE_MANUAL 0

Manual control of the LEDs.

ABS_LED_MODE_AUTO 1

Automatic control of the LEDs.

ABS_LED_MODE_MANUAL2 3

Advanced manual control of the LEDs (TCS5D only).

ABS_LED_MODE_READER 4

Reader-driven automatic LED control is forced.

ABS_LED_MODE_OFF 0xFFFFFFFF

LEDs are turned off.

BSAPI Reference Manual

119

6.19 LED Bits for Flags in ABS_LED_PARAMS_MANUAL2 Structure
(ABS_LEDDRV_FLAG_xxxx)

BS_LEDDRV_FLAG_START_ON 0x00000001

If set, state machine will start from the beginning of "ON" period.

ABS_LEDDRV_FLAG_STOP_AFTER_OFF 0x00000002

If set, state machine will stop after first "OFF" period finishes.

ABS_LEDDRV_FLAG_BR_INVERT 0x00000004

If set, brightness output is inverted.

ABS_LEDDRV_FLAG_TABLE_COSEXP 0x00000008

If set, brightness level is defined as CosExp function, otherwise linear function is used.

BSAPI Reference Manual

120

6.20 Session and Global Parameter Constants (ABS_PARAM_xxxx)

These constants identify each parameter and can be used as value of parameter dwParamID of ABSSetSessionPa-
rameter and ABSGetSessionParameter (for session parameters) functions, or ABSSetGlobalParameter and ABS-
GetGlobalParameter (for global parameters).

BSSRV.DLL (functions ABSSrvSetGlobalParameter and ABSSrvGetGlobalParameter) supports only parameters
ABS_PARAM_MATCH_LEVEL and ABS_PARAM_IFACE_VERSION. The latter can be only read with AB-
SSrvGetGlobalParameter.

ABS_PARAM_CONSOLIDATION_COUNT 1

Obsolete. Use parameters ABS_PARAM_CONSOLIDATION_COUNT_MIN and
ABS_PARAM_CONSOLIDATION_COUNT_MAX instead.

This parameter is only kept for backward compatibility and new code should not use it.

Setting this parameter to 3 or 5 is equivalent to setting both
ABS_PARAM_CONSOLIDATION_COUNT_MIN and ABS_PARAM_CONSOLIDATION_COUNT_MAX
to the same value. Setting this parameter to zero is equivalent to set-
ting ABS_PARAM_CONSOLIDATION_COUNT_MIN to 3 and
ABS_PARAM_CONSOLIDATION_COUNT_MAX to 10.

When this parameter is read, then the returned value depends on actu-
al values of ABS_PARAM_CONSOLIDATION_COUNT_MIN and
ABS_PARAM_CONSOLIDATION_COUNT_MAX. If those other parameters are equal then that value is re-
turned, If those parameters differ, then zero is returned.

ABS_PARAM_CONSOLIDATION_TYPE 2

Determines type of consolidation.

I.e. how multiple templates are mixed together, to get one high-quality template. See description of parameter
ABS_PARAM_CONSOLIDATION_COUNT as well.

Value is represented as ABS_DATA with 1 byte of length. The value can be any constant
ABS_CONSOLIDATION_xxxx. See description of those constants.

ABS_PARAM_MATCH_LEVEL 3

Determines required level of security for comparing two templates with ABSVerifyMatch.

Value is represented as ABS_DATA with 1 byte of length. For the list of supported values, see
ABS_MATCH_xxxx.

ABS_PARAM_DISABLE_SENSOR_SLEEP 4

Allows to disable sensor sleeping.

Value is represented as ABS_DATA with 1 byte of length. When zero, BSAPI can switch the device to sleep
mode, to save power. When non-zero, the sleep mode is disabled.

ABS_PARAM_DISABLE_SELECTIVE_SUSPEND 5

Allows to disable the selective suspend.

BSAPI Reference Manual

121

Value is represented as ABS_DATA with 1 byte of length. When zero, the selective suspend can be used.
When non-zero, the selective suspend is disabled.

ABS_PARAM_POWER_SAVE_MODE 6

Sets default power safe mode, if it is not disabled completely with
ABS_PARAM_DISABLE_SENSOR_SLEEP.

Value is represented as ABS_DATA with 1 byte of length. Possible values are: 0 – power save is always off
(high power consumption); 1 – power save is always on (minimal power consumption, higher time latencies
can occur); 2 – power save switching depending on the user activity.

See also ABS_PARAM_POWER_SAVE_TIMEOUT.

ABS_PARAM_POWER_SAVE_TIMEOUT 7

Together with other parameters, it determines how power save works.

This parameter specifies timeout since last user activity to allow selective suspend for the fingerprint device. It
has some effect to power management only if ABS_PARAM_POWER_SAVE_MODE is set to 2.

Value is represented as ABS_DATA with 4 bytes of length. The value is interpreted as ABS_DWORD, deter-
mining number of seconds. Default is 3 minutes.

See also ABS_PARAM_POWER_SAVE_MODE, ABS_PARAM_POWER_SAVE_CHECK_KEYBOARD
and ABS_PARAM_POWER_SAVE_ACTIVE_TO_SLEEP_TIMEOUT.

ABS_PARAM_ANTISPOOFING_POLICY 8

Value is represented as ABS_DATA with 1 byte of length.

For the list of supported values, see ABS_ANTISPOOFING_xxxx.

ABS_PARAM_ANTISPOOFING_LEVEL 9

If antispoofing algorithms are applied, this settings determines trade-off between security and user's conve-
nience.

Value is represented as ABS_DATA with 1 byte of length. Possible values are: 0 - convenience is preferred
(default); 1 - security is preferred.

ABS_PARAM_OPEN_TOTAL_TIMEOUT 10

Total open-session timeout.

When some specific error occurs with device (e.g. communication error caused by ESD), BSAPI automatically
attempts to restore communication session with the device. This parameter specifies maximal amount of time
BSAPI attempts to reopen the session.

Value is represented as ABS_DATA with 4 bytes of length. The value is interpreted as ABS_DWORD, deter-
mining number of milliseconds. Default value is 5000.

ABS_PARAM_OPEN_RETRY_UI_NOTIFY_TIMEOUT 11

Timeout to user-interface notification about the reopen attempt.

BSAPI Reference Manual

122

When BSAPI is attempting to reopen session for time longer then this this parameter specifies, then callback of
an interactive operation receives message ABS_MSG_PROCESS_PROGRESS, so the end-user is notified that
the device is busy.

Value is represented as ABS_DATA with 4 bytes of length. The value is interpreted as ABS_DWORD, deter-
mining number of milliseconds. Default value is 2000.

ABS_PARAM_OPEN_RETRY_DELAY 12

Delay between two subsequent session reopen attempts.

BSAPI attempts to reopen the session repeatedly until it succeeds or until
ABS_PARAM_OPEN_TOTAL_TIMEOUT expires. This parameter then specifies delay between two subse-
quent reopen attempts.

The value is represented as ABS_DATA with 4 bytes of length. The value is interpreted as ABS_DWORD, de-
termining number of milliseconds. Default value is 500.

ABS_PARAM_IFACE_VERSION 13

Read-only global parameter which determines version of BSAPI interface.

Value is represented as ABS_DATA with 1 byte of length. This version of BSAPI uses version 2 of the inter-
face.

Note that corresponding versions of BSAPI.DLL and BSSRV.DLL always get the same value of this parame-
ter.

ABS_PARAM_POWER_SAVE_CHECK_KEYBOARD 14

This global parameter determines if keyboard and mouse are treated as an user activity.

Value is represented as ABS_DATA with 4 bytes of length. Zero means the keyboard and mouse actions are
not treated as an user activity, so only touching the sensor has impact to power management. Non-zero means
the keyboard and mouse are considered an user activity.

On Windows, the default value is 1 unless BSAPI is running in NT service compatible mode i.e. unless it is
initialized with function ABSInitializeEx with flag ABS_INIT_FLAG_NT_SERVICE set. If BSAPI is in NT
service compatible mode, the default value is zero.

Note that on Windows and when the parameter is set to 1, the user activity is detected only in a context of ac-
tive user's session. if the process does not run in active user's session, user actions on keyboard and mouse are
not detected.

On other systems, default value is zero and setting the value is not supported.

See also ABS_PARAM_POWER_SAVE_MODE and ABS_PARAM_POWER_SAVE_TIMEOUT.

ABS_PARAM_LATENT_CHECK 16

This global parameter determines whether antilatent checks are performed implicitely.

BSAPI Reference Manual

123

Value is represented as ABS_DATA with 1 byte of length. If set to 0, the antiltent checks are disabled, when
1 (default) the cheks are enabled, so any call to ABSEnroll or ABSVerify implicitely checks for latent finger-
prints on area sensors.

After calling another functions (e.g. ABSGrab or ABSCapture), it's up on application to do the check manually
with function ABSCheckLatent if it desires to do so.

See chapter Anti-latent Checking for more information.

ABS_PARAM_SENSOR_SECURITY 17

This global parameter determines security level of communication between fingerprint device and computer.

Value is represented as ABS_DATA with 1 byte of length. The value can be any constant
ABS_SENSOR_SECURITY_xxxx. See description of those constants.

Note that opening new session to already opened device will use the same setting as for the previous session.

ABS_PARAM_POWER_SAVE_ACTIVE_TO_SLEEP_TIMEOUT 18

Determines timeout since last user activity to enable sensor sleeping.

After this timeout elapses, the sensor in fingerprint device is not powered until user places his finger on it.

Value is represented as ABS_DATA with 4 bytes of length, and the timeout is measured in seconds. De-
fault is 30 seconds. It is recommended this timeout should be shorter then then the one specified with
ABS_PARAM_POWER_SAVE_TIMEOUT.

See also ABS_PARAM_POWER_SAVE_MODE and ABS_PARAM_POWER_SAVE_TIMEOUT.

ABS_PARAM_POWER_SAVE_RESET_ON_OPERATION_START 19

This global parameter specifies whether power save timeouts are reset on operation start.

When set to 1, operation start is also considered to be an user activity event and us-
er activity timeouts (namely ABS_PARAM_POWER_SAVE_TIMEOUT and
ABS_PARAM_POWER_SAVE_ACTIVE_TO_SLEEP_TIMEOUT) are measured since operation start or
specified user activity, whatever happens later.

In other words, when set to 1, the device is in full-power mode when starting any operation with the fingerprint
device regardless of user's last activity on the fingerprint sensor.

When set to 0 (default), operation start has no influence on timeouts specified above.

ABS_PARAM_IGNORE_BIOMETRIC_TIMEOUT 20

This global parameter determines whether biometric timeout reported by device is ignore or not.

When in sleep mode, the device can still detect presense of user's finger on the bezel framing the sensor. When
the finger is detected, the device wakes up the sensor and it starts scanning of the finger.

However waking the sensor up can take few tens milliseconds and by that time the finger might be gone. If the
woken sensor cannot detect a finger on it for some short time after the finger has been detected on the bezel, a
biometric timeout is reported by the device.

BSAPI Reference Manual

124

This situation can also happen accidentaly, especially with sensors integrated to a body of notebook (typically
quite close to a keyboard).

Value is represented as ABS_DATA with 1 byte of length. If set to zero, the biometric timeout situation is
translated to ABS_MSG_QUALITY_TOO_FAST. If set to 1 (default), there is no such GUI feedback and the
as BSAPI assumes the biometric timeout situation is accidental. In both cases, the biometric operation contin-
ues and expects user to swipe his finger again.

ABS_PARAM_CONSOLIDATION_COUNT_MIN 21

Specifies minimal count of finger swipes for consolidation.

Consolidation is a process used for merging information acquired from multiple fingerprint template to one
high-quality template, used in enrollment operation. This parameter determines minimal count of how many
templates are consolidated into one enrollment template.

The value is represented as ABS_DATA with 1 byte of length. Only values in the range 3 - 10 are allowed. De-
fault value is 3.

Note that behavior of enrollment operation is undefined if ABS_PARAM_CONSOLIDATION_COUNT_MIN
is greater then ABS_PARAM_CONSOLIDATION_COUNT_MAX.

ABS_PARAM_CONSOLIDATION_COUNT_MAX 22

Specifies maximal count of finger swipes for consolidation.

Consolidation is a process used for merging information acquired from multiple fingerprint template to one
high-quality template, used in enrollment operation. This parameter determines maximal count of how many
templates are consolidated into one enrollment template.

The value is represented as ABS_DATA with 1 byte of length. Only values in the range 3 - 10 are allowed. De-
fault value is 10.

Note that behavior of enrollment operation is undefined if
ABS_PARAM_CONSOLIDATION_COUNT_MAX is lower then
ABS_PARAM_CONSOLIDATION_COUNT_MIN.

ABS_PARAM_IMAGE_ENHANCEMENT 23

Enables image enhancement postprocessing.

Value is represented as ABS_DATA with 1 byte of length. If set to 1 then postprocesing algorithms are applied
to all captured images in order to enhance quality of the images (e.g. improvement of image contrast). If set to
0 then no image postprocessing is done.

The default value is 0 (i.e. postprocessing is disabled).

ABS_PARAM_DISABLE_FFE 24

Disables Faint Finger Enhancement.

Value is represented as ABS_DATA with 1 byte of length. If set to 1 then Faint Finger Enhancements are glob-
ally disabled. If set to 0 then Faint Finger Enhancement is used when possible.

BSAPI Reference Manual

125

The default value is 0 (i.e. FFE enabled).

ABS_PARAM_DYNAMIC_GAIN 25

Enables image dynamic gain.

Value is represented as ABS_DATA with 1 byte of length. If set to 1 then dynamic gain is applied to all cap-
tured images in order to enhance quality of the images. If set to 0 then dynamic gain is off.

The default value is 1 (i.e. dynamic gain is enabled).

BSAPI Reference Manual

126

6.21 Parameter ABS_PARAM_CONSOLIDATION_TYPE Values (ABS_CONSOLIDATION_xxxx)

These constants are intended as possible values of parameter

ABS_CONSOLIDATION_NORMAL 0

Normal consolidation algorithm is used.

Enrollment template is constructed either from a subset of collected templates, or it uses one (the best) of pro-
vided templates. A built-in heuristic makes the decision which one of the approaches is used.

ABS_CONSOLIDATION_CONVENIENT 1

Convenient consolidation algorithm is used.

Similar to ABS_CONSOLIDATION_NORMAL policy with relaxed criteria for image/template acceptance for
entering the enrollment process.

ABS_CONSOLIDATION_STRICT 2

Strict consolidation algorithm is used.

Similar to ABS_CONSOLIDATION_NORMAL policy, except that all collected templates must match each
other (i.e. the same finger has to be used for all acquisitions).

BSAPI Reference Manual

127

6.22 Parameter ABS_PARAM_MATCH_LEVEL Values (ABS_MATCH_xxxx)

These constants are intended as possible values of parameter

ABS_MATCH_MIN_SECURITY 1

Minimal security setting.

ABS_MATCH_LOWER_SECURITY 2

Lower security setting.

ABS_MATCH_MEDIUM_SECURITY 3

Medium security setting.

ABS_MATCH_HIGHER_SECURITY 4

Higher security setting.

ABS_MATCH_MAX_SECURITY 5

Maximal security setting.

BSAPI Reference Manual

128

6.23 Parameter ABS_PARAM_ANTISPOOFING_POLICY Values (ABS_ANTISPOOFING_xxxx)

These constants are intended as possible values of parameter

ABS_ANTISPOOFING_DISABLED 0

Antispoofing checks are explicitly turned off on the fingerprint sensor. This is default value.

ABS_ANTISPOOFING_AUTODETECT 1

Antispoofing checks are explicitly turned on on the fingerprint sensor if the device supports it.

ABS_ANTISPOOFING_DEVICE_DEFAULT 2

Antispoofing settings are not touched in any way so default settings (device dependent) are used.

BSAPI Reference Manual

129

6.24 Parameter ABS_PARAM_SENSOR_SECURITY Values (ABS_SENSOR_SECURITY_xxxx)

These constants are intended as possible values of parameter

ABS_SENSOR_SECURITY_LOW 0

BSAPI always uses lower security of communication with fingerprint device.

It can enhance performance with some fingerprint devices.

STM32 device: Communication encryption is OFF.

ABS_SENSOR_SECURITY_NORMAL 1

BSAPI automatically decides what secutritu level to use.

How the settings apply then depends on device type and its capabilities. Highly secured communication is usu-
ally used whenever possible, unless it would have very bad impact on performance. This is default value.

STM32 device: Communication encryption is OFF. (Default)

ABS_SENSOR_SECURITY_HIGH 2

BSAPI always uses higher security of communication with fingerprint device.

Using this value can have notably negative impact on performance.

STM32 device: Communication encryption is ON.

BSAPI Reference Manual

130

6.25 Callback Message Codes (ABS_MSG_xxxx)

These codes are used as values for dwMsgID parameter of ABS_CALLBACK.

Callback function can react on various messages accordingly, usually showing/updating a dialog with some mes-
sage. Also the specific ABS_MSG_xxxx values determine the meaning of the pMsgData parameter of the callback.

There are several categories of the messages:

• Process messages (ABS_MSG_PROCESS_xxxx). These determine lifecycle of the complete interactive op-
eration. Each process is demarcated by ABS_MSG_PROCESS_BEGIN and ABS_MSG_PROCESS_END.
Between the two some other messages (including nested subprocess) can arrive. See description of
ABS_PROCESS_xxxx constants for more information about the operation lifecycle.

• Prompting messages (ABS_MSG_PROMPT_xxxx). The callback is expected to prompt user to do some action
with the FM sensor, e.g. scan his finger, or left the finger from the sensor.

• Quality feedback messages (ABS_MSG_QUALITY_xxxx). These inform use that his interaction with the
sensor has low quality. Depending on the nature of the interactive operation, this can lead to repeating the
process, so that the user is prompted to do the action again.

• Navigation messages (ABS_NAVIGATE_xxxx). These are called only during navigation (see ABSNavigate).

The following table lists all supported message codes.

ABS_MSG_PROCESS_BEGIN 0x11000000

New process stage of the interactive operation begun.

Together with ABS_MSG_PROCESS_END, this messages define the interactive operation lifecycle skeleton.

pMsgData points to additional data stored in structure ABS_PROCESS_BEGIN_DATA.

ABS_MSG_PROCESS_END 0x12000000

Process stage of the interactive operation ended.

Together with ABS_MSG_PROCESS_BEGIN, this messages define the interactive operation lifecycle skele-
ton. See description of ABS_PROCESS_xxxx constants for more information about the operation lifecycle.

pMsgData points to additional data stored in structure ABS_PROCESS_DATA.

ABS_MSG_PROCESS_SUSPEND 0x13000000

Execution of the interactive operation has been suspended.

It happens when some other operation (with the same or higher priority) acquires the sensor. After this inter-
rupting operation finishes, the process is resumed again.

pMsgData points to additional data stored in structure ABS_PROCESS_DATA.

ABS_MSG_PROCESS_RESUME 0x14000000

The interactive operation has been resumed.

pMsgData points to additional data stored in structure ABS_PROCESS_PROGESS_DATA.

ABS_MSG_PROCESS_PROGRESS 0x15000000

BSAPI Reference Manual

131

Informs that the operation is in progress.

pMsgData points to additional data stored in structure ABS_PROCESS_DATA.

ABS_MSG_PROCESS_SUCCESS 0x16000000

Informs that the process has succeeded.

If it comes it is last message before ABS_MSG_PROCESS_END. Depending on the particular pro-
cess nature it can use ABS_MSG_PROCESS_SUCCESS or ABS_MSG_PROCESS_FAILURE before
ABS_MSG_PROCESS_END, but some other processes do not call any of the two.

pMsgData points to additional data stored in structure ABS_PROCESS_SUCCESS_DATA.

ABS_MSG_PROCESS_FAILURE 0x17000000

Informs that the operation has failed.

If it comes it is last message before ABS_MSG_PROCESS_END. Depending on the particular pro-
cess nature it can use ABS_MSG_PROCESS_SUCCESS or ABS_MSG_PROCESS_FAILURE before
ABS_MSG_PROCESS_END, but some other processes do not call any of the two.

pMsgData points to additional data stored in structure ABS_PROCESS_DATA.

ABS_MSG_PROMPT_SCAN 0x21000000

Callback should prompt the user to swipe his finger.

pMsgData is always NULL.

ABS_MSG_PROMPT_TOUCH 0x22000000

Callback should prompt user to touch the sensor.

pMsgData is always NULL.

ABS_MSG_PROMPT_KEEP 0x23000000

Callback should prompt user to keep the finger on the sensor.

pMsgData is always NULL.

ABS_MSG_PROMPT_LIFT 0x24000000

Callback should prompt the user to left his finger from the sensor.

pMsgData is always NULL.

ABS_MSG_PROMPT_CLEAN 0x25000000

Callback should prompt the user to clean the sensor.

pMsgData is always NULL.

ABS_MSG_QUALITY 0x30000000

Swipe quality is low.

Note that if possible BSAPI sends more specific ABS_MSG_QUALITY_xxxx messages, this message is sent
only when no more specific message is appropriate.

BSAPI Reference Manual

132

pMsgData is always NULL.

ABS_MSG_QUALITY_CENTER_HARDER 0x31000000

Swipe quality is low. User should center his finger on the sensor and press harder.

pMsgData is always NULL.

ABS_MSG_QUALITY_CENTER 0x31100000

Swipe quality is low. User should center his finger on the sensor.

pMsgData is always NULL.

ABS_MSG_QUALITY_TOO_LEFT 0x31110000

Swipe quality is low. The swipe is too left.

pMsgData is always NULL.

ABS_MSG_QUALITY_TOO_RIGHT 0x31120000

Swipe quality is low. The swipe is too right.

pMsgData is always NULL.

ABS_MSG_QUALITY_TOO_HIGH 0x31130000

Swipe quality is low. The swipe is too high.

pMsgData is always NULL.

ABS_MSG_QUALITY_TOO_LOW 0x31140000

Swipe quality is low. The swipe is too low.

pMsgData is always NULL.

ABS_MSG_QUALITY_HARDER 0x31200000

User should press harder.

pMsgData is always NULL.

ABS_MSG_QUALITY_TOO_LIGHT 0x31210000

Swipe quality is low. The swipe is too light.

pMsgData is always NULL.

ABS_MSG_QUALITY_TOO_DRY 0x31220000

Swipe quality is low. The swipe is too dry.

pMsgData is always NULL.

ABS_MSG_QUALITY_TOO_SMALL 0x31230000

Swipe quality is low. The swipe is too small.

pMsgData is always NULL.

ABS_MSG_QUALITY_TOO_SHORT 0x32000000

BSAPI Reference Manual

133

Swipe quality is low. The swipe is too short.

pMsgData is always NULL.

ABS_MSG_QUALITY_TOO_FAST 0x33000000

Swipe quality is low. The swipe is too fast.

pMsgData is always NULL.

ABS_MSG_QUALITY_TOO_SKEWED 0x34000000

Swipe quality is low. The swipe is too skewed.

pMsgData is always NULL.

ABS_MSG_QUALITY_TOO_DARK 0x35000000

Swipe quality is low. The swipe is too dark.

pMsgData is always NULL.

ABS_MSG_QUALITY_BACKWARD 0x36000000

Swipe quality is low. The swipe is moved backward.

pMsgData is always NULL.

ABS_MSG_QUALITY_JOINT 0x37000000

Swipe quality is low. Joint has been detected.

pMsgData is always NULL.

ABS_MSG_NAVIGATE_CHANGE 0x41000000

Notifies about navigation change (user has moved his finger, touched the sensor of left the finger). Applies on-
ly during navigation operation.

pMsgData points to ABS_NAVIGATION_DATA structure.

ABS_MSG_NAVIGATE_CLICK 0x42000000

Notifies that the user clicked on sensor by his finger. Applies only during navigation operation.

pMsgData is always NULL.

ABS_MSG_DLG_SHOW 0x51000000

Notifies that the feedback dialog should be shown.

pMsgData is always NULL.

ABS_MSG_DLG_HIDE 0x52000000

Notifies that the feedback dialog should be hidden.

pMsgData is always NULL.

ABS_MSG_IDLE 0x0

Special message, which gives the callback a chance to cancel the interactive operation. pMsgData is always
NULL.

BSAPI Reference Manual

134

Note that this message is used only when flag ABS_OPERATION_FLAG_USE_IDLE was specified in struc-
ture ABS_OPERATION.

This allows to cancel the interactive operation even in single-threaded applications.

BSAPI Reference Manual

135

7 List of Defined Result Codes

The following result codes can be returned as the PT_STATUS values.

Success return status.

ABS_STATUS_OK (0)

General, unknown, or unspecified error.

ABS_STATUS_GENERAL_ERROR (-5001)

Internal error.

ABS_STATUS_INTERNAL_ERROR (-5002)

BSAPI has been already initialized.

ABS_STATUS_ALREADY_INITIALIZED (-5003)

BSAPI is not initialized.

ABS_STATUS_NOT_INITIALIZED (-5004)

Connection is already opened.

ABS_STATUS_ALREADY_OPENED (-5005)

Invalid parameter.

ABS_STATUS_INVALID_PARAMETER (-5006)

Invalid (connection) handle.

ABS_STATUS_INVALID_HANDLE (-5007)

No such device found.

ABS_STATUS_NO_SUCH_DEVICE (-5008)

Operation has been interrupted due timeout.

ABS_STATUS_TIMEOUT (-5009)

Requested feature/function not implemented.

ABS_STATUS_NOT_IMPLEMENTED (-5010)

Requested feature/function not supported.

ABS_STATUS_NOT_SUPPORTED (-5011)

BSAPI Reference Manual

136

The operation has been canceled.

ABS_STATUS_CANCELED (-5012)

The operation has not been found (invalid operation ID or the operation already fin-
ished).

ABS_STATUS_NO_SUCH_OPERATION (-5013)

Communication error related to remote session (Terminal Services or Citrix)has oc-
cured.

ABS_STATUS_REMOTE_COMM_ERROR (-5014)

The operation is not permitted. It might be a matter insufficient rights of the current
user.

ABS_STATUS_ACCESS_DENIED (-5015)

There is not enough permanent memory to store the data.

ABS_STATUS_NOT_ENOUGH_PERMANENT_MEMORY (-5016)

BSAPI Reference Manual

137

8 New Features

8.1 New Features in Version 4.2

8.1.1 New Global Parameters

ABS_PARAM_IMAGE_ENHANCEMENT global property was added to control image enhancement feature of
BSAPI.

8.1.2 New Device Properties

ABS_DEVPROP_SENSOR_VARIANT device property was added.

ABS_DEVPROP_SENSOR_TYPE_FLAG_xxxx sensor type property flags was added.

8.1.3 New Hardware Supported

Support for TCD51A (TCD59) based modules and readers was added.

8.2 New Features in Version 4.1.1

8.2.1 New LED control mode

New LED control mode, ABS_LED_MODE_READER was added. This is fully automatic mode, controlled solely
by the reader. Blinking pattern of this mode is purely device-dependent.

8.3 New Features in Version 4.1

8.3.1 New Device property

New device property ABS_DEVPROP_NVM_TYPE was added and can be used with ABSGetDeviceProperty.

8.3.2 New Finger detection funcionality

There is new function ABSDetectFinger which allows detecting whether finger is present on the sensor and allows
waiting until finger is present or until finger is removed.

8.4 New Features in Version 4.0

8.4.1 New Device property

New device property ABS_DEVPROP_USAGE was added and can be used with ABSGetDevicePropery.

8.4.2 New Global Parameters

There are two new global parameters ABS_PARAM_CONSOLIDATION_COUNT_MIN
and ABS_PARAM_CONSOLIDATION_COUNT_MAX which replace now obsolete
ABS_PARAM_CONSOLIDATION.

8.4.3 Advanced Support for LEDs

There are new and more versatil functions for controling blinking with LEDs. See description of functions ABS-
SetLedEx and ABSGetLedEx and related structures, and also the chapter Blinking with LEDs.

BSAPI Reference Manual

138

8.5 New Features in Version 3.9

8.5.1 New Global Parameters

There are two new global parameters ABS_PARAM_POWER_SAVE_ACTIOVE_TO_SLEEP_TIMEOUT and
ABS_PARAM_POWER_SAVE_RESET_ON_OPETRATION_START, which allow some detailed settings for
power control management.

New global parameter ABS_PARAM_IGNORE_BIOMETRIC_TIMEOUT specifies whether biometric situation
is reported as ABS_MSG_QUALITY_TOO_FAST via ABS_CALLBACK.

8.5.2 New Device Properties.

WIth function ABSGetDeviceProperty two new properties can be inspected: ABS_DEVPROP_SYSTEM_ID and
ABS_DEVPROP_SYSTEM_NAME.

8.6 New Features in Version 3.5

8.6.1 Global Parameter ABS_PARAM_IFACE_VERSION

New global parameter ABS_PARAM_IFACE_VERSION was added, which allows the caller to detect the inter-
face of the BSAPI because version 3.5 of BSAPI brings one icompatibility with previous version: dynamic en-
rollment (see below).

The old interface (which does not support this parameter) is version 1. Current version is 2. Future versions of
BSAPI will use higher numbers if they will introduce new incompatibilities.

To distinguish between version 1 and 2 of the interface programatically, call ABSGetGlobalParameter() with
dwParam set to ABS_PARAM_IFACE_VERSION. If the return value is ABS_STATUS_NOT_SUPPORTED,
it's interface version 1. If ABS_STATUS_OK is returned, interpret the returned output parameter to determine
number of the interface.

Note that this parameter is designed to be read-only. I.e. you can only get its value with ABSGetGlobalParameter().
Attempting to use it in ABSSetGlboalParameter() will fail with ABS_STATUS_NOT_SUPPORTED.

8.6.2 Dynamic Enrollment

Since version 3.5 BSAPI.DLL uses a dynamic enrollment. This means that there is no a priori known count how
many swipes are required to enroll a finger. During the enrollment process the resulted fingerprint template is
actualized and analyzed after each finger scan, and the process finishes when BSAPI evaluates quality of the
fingerprint template as sufficient.

This change required several changes in the API.

8.6.2.1 Global Parameter ABS_PARAM_CONSOLIDATION_COUNT

This global parameter was already present in older version of BSAPI however set of supported values have
changed. Old version supported 3 and 5 swipes mostly on all devices. Currently only values 0 (default, meaning
the dynamic enrollment) and 5 are supported.

Value 3 is not longer supported since version 3.5.

8.6.2.2 Structure ABS_PROCESS_BEGIN_DATA

Message ABS_MSG_PROCESS_BEGIN has attached some information, pointed by last parameter sent to
ABS_CALLBACK function. The data are described by ABS_PROCESS_BEGIN_DATA.

Now the member StepCount can be set to zero if count of steps is not known, e.g. as in case of dynamic enrollment.

BSAPI Reference Manual

139

8.6.2.3 Structure ABS_PROCESS_PROGRESS_DATA

Message ABS_MSG_PROCESS_PROGRESS now comes with more data. Previously it was accompanied with
ABS_PROCESS_DATA, now ABS_PROCESS_PROGRESS_DATA is sent.

Note that ABS_PROCESS_PROGRESS_DATA is binary compatible with ABS_PROCESS_DATA.
ABS_PROCESS_PROGRESS_DATA is superset of ABS_PROCESS_DATA. Beside the old ProcessID mem-
ber, ABS_PROCESS_PROGRESS_DATA has member Percentage which informs the caller how the operation
progresses.

The process (e.g. the dynamic enrollment) ends when the Percentage reaches 100. For processes where the Per-
centage is not applicable, it's set to 0xFFFFFFFF.

8.6.2.4 Constant ABS_PROCESS_CONSOLIDATE

The enrollment process has been changed and the separate finger templates are consolidated into the resulted
enrollment template gradually so the consolidation is not single step of the enrollment process.

Member ProcessID in structures ABS_PROCESS_DATA, ABS_PROCESS_BEGIN_DATA,
ABS_PROCESS_PROGRESS_DATA and ABS_PROCESS_SUCCESS_DATA is never set to the value. The
constant is kept in bstypes.h header for backward compatibility of application source codes which might use it.

8.6.3 Image Grabbing Functions

8.6.3.1 Constant ABS_FLAG_HIGH_RESOLUTION

Function ABSGrab accepts new flag ABS_FLAG_HIGH_RESOLUTION, which asks the function to use the
highest available image resolution.

8.6.3.2 Structure ABS_IMAGE

Structure ABS_SAMPLE_IMAGE was renamed to ABS_IMAGE. ABS_SAMPLE_IMAGE is kept as typedefed
alias of ABS_IMAGE for backward compatibility.

8.6.3.3 New Grabbing Functions

Three new brand image grabbing functions are added in BSAPI.DLL version 3.5: ABSListImageFormats, ABS-
GrabImage and ABSRawGrabImage. All these use new structure ABS_IMAGE_FORMAT to identify supported
and desired image formats.

8.6.4 Global Parameter ABS_PARAM_POWER_SAVE_CHECK_KEYBOARD

New global parameter ABS_PARAM_POWER_SAVE_CHECK_KEYBOARD was added, which allows to tune
power management into more details.

8.6.5 Internal Template Format Types

Please note this article refers only to the data of the template data itself, i.e. the member Data of ABS_BIR structure.
All internal template types are always preceded by ABS_BIR_HEADER when returned from BSAPI, and also the
ABS_BIR_HEADER preceding the data is expected on input.

In general AuthenTec uses several template format types:

• legacy template,

• alpha template,

• beta template,

BSAPI Reference Manual

140

• alpha multi-template.

The internal format of the fingerprint teplates returned from the BSAPI.DLL has changed in version 3.5.
BSAPI.DLL up to version 3.0 always returned all templates in the legacy format. Since BSAPI.DLL 3.5, enroll-
ment process results in alpha multi-template and verification templates are always beta. Future BSAPI versions
might switch to yet another (currently undefined) template format.

BSAPI 3.5 is able to take any of the listed template types on input. When comparing two templates with ABSVer-
ifyMatch function or ABSSrvVerifyMatch, each of the input templates can have different format. So typically you
don't need to care from which version the template originates.

If you really need a speicific format of the template, e.g. when you need the template to pass to another library
(not part of BSAPI SDK), not supporting too new template types, you may use BCLIB library. BCLIB is now
provided as a part of the BSAPI SDK. It provides an interface for converting among various tamplate format types.
However remember that some conversions might imply partial data loss of the template, and not all conversions
are supported (for example converting legacy template to beta template is not possible). Refer to documentation
of the BCLIB for more information about this topic.

8.6.6 Compatibility with Windows NT Services

Since version 3.5 BSAPI.DLL provides new function ABSInitializeEx, taking a bitmask flags as its only parameter.
This function can be (on Windows platform) used to initialize in a mode compatible with Windows NT service.

8.6.7 ABS_CALLBACK and Threads

Callbacks from interactive operations are now guaranteed to be called from the same thread context, where the
interactive operation has been called. This is especially important for developers which use BSAPI.DLL from a
programming language without any support for multithreading, e.g. MS VisualBasic.

8.6.8 Server-Side Library BSSRV.DLL

New library BSSRV.DLL was added into BSAPI SDK. This library offers simple way of comparing two finger-
print templates, without opening any session with fingerprint sensor device.

This library was designed for applications of server-client architecture, where clients are expected to work with
fingerprint sensor (i.e. client uses BSAPI.DLL), while server typically manages some database of fingerprint
templates and offers verification service for clients.

8.6.9 Support for Terminal and Citrix

BSAPI now supports usage of locally plugged-in fingerprint devices from remote application, when connected to
a remote desktop via Terminal Services or Citrix.

See chapter Support for Terminal Services and Citrix for description of this feature.

